

Offset: 0x000C			Register Name: UART_LCR
Bit	Read/Write	Default/Hex	Description
1:0	R/W	0x0	DLS Data Length Select It is writable only when UART is not busy (UART_USR[0] is 0) and always readable. This is used to select the count of bits in a transmitted or received frame. 00: 5 bits
			01: 6 bits 10: 7 bits 11: 8 bits

9.2.6.9 0x0010 UART Modem Control Register (Default Value: 0x0000_0000)

x0010 L	x0010 UART Modem Control Register (Default Value: 0x0000_0000)				
Offset:	0x0010		Register Name: UART_MCR		
Bit	Read/Write	Default/Hex	Description		
31:8	1	1	/		
			UART_FUNCTION		
		0x0	Select IrDA or RS485		
7.0	D /144		00: UART Mode		
7:6	R/W		01: IrDA SIR Mode		
			10: RS485 Mode		
			11: Reserved		
		0x0	AFCE		
			Auto Flow Control Enable		
5	R/W		When FIFOs are enabled and the AFCE bit is set, the AutoFlow		
			Control is enabled.		
			0: Auto Flow Control mode disabled		
			1: Auto Flow Control mode enabled		

Offset:	Offset: 0x0010		Register Name: UART_MCR
Bit	Read/Write	Default/Hex	Description
4	R/W	0x0	LOOP Loop Back Mode 0: Normal Mode 1: Loop Back Mode This is used to put the UART into a diagnostic mode for test purposes. If operating in UART mode (SIR_MODE != Enabled or not active, UART_MCR[6] is set to 0), the data on the SOUT line is held high, while serial data output is looped back to the sin line, internally. In this mode, all the interrupts are fully functional. Also, in loopback mode, the modem control inputs (dsr_n, cts_n, ri_n, dcd_n) are disconnected and the modem control outputs (dtr_n, rts_n, out1_n, out2_n) are looped back to the inputs, internally. If operating in infrared mode (SIR_MODE == Enabled AND active, UART_MCR[6] is set to 1), the data on the sir_out_n line is held low, while serial data output is inverted and looped back to the sir_in line.
3:2	1	1	
1	R/W	0x0	RTS Request to Send This is used to directly control the Request to Send (rts_n) output. The RTS (rts_n) output is used to inform the modem or data set that the UART is ready to exchange data. When Auto RTS Flow Control is not enabled (<i>UART_MCR</i> [5] is set to 0), the rts_n signal is set low by programming UART_MCR[1] (RTS) to a high. In Auto Flow Control, AFCE_MODE == Enabled and active (<i>UART_MCR</i> [5] is set to 1) and FIFOs enable (UART_FCR[0] is set to 1), the rts_n output is controlled in the same way, but is also gated with the receiver FIFO threshold trigger (rts_n is inactive high when above the threshold). The rts_n signal is de-asserted when UART_MCR[1] is set low. 0: rts_n de-asserted (logic 1) 1: rts_n asserted (logic 0) Note that in Loopback mode (UART_MCR[4] is set to 1), the rts_n output is held inactive high while the value of this location is internally looped back to an input.

Offset	t: 0x0010		Register Name: UART_MCR
Bit	Read/Write	Default/Hex	Description
			DTR
			Data Terminal Ready
			This is used to directly control the Data Terminal Ready (dtr_n)
			output. The value written to this location is inverted and driven
			out on dtr_n.
0	R/W	0x0	0: dtr_n de-asserted (logic 1)
0	1.7 00		1: dtr_n asserted (logic 0)
			The DTR output is used to inform the modem or data set that the
			UART is ready to establish communications.
			Note that in Loopback mode (UART_MCR[4] is set to 1), the dtr_n
			output is held inactive high while the value of this location is
			internally looped back to an input.
0x0014 UART Line Status Register (Default Value: 0x0000_0060)			
Offset	t:0x0014		Register Name: UART_LSR

9.2.6.10 0x0014 UART Line Status Register (Default Value: 0x0000_0060)

Offset:0)x0014		Register Name: UART_LSR
Bit	Read/Write	Default/Hex	Description
31:8	1	1	/
			FIFOERR
			RX Data Error in FIFO
7	R	0x0	When FIFOs are disabled, this bit is always 0. When FIFOs are enabled, this bit is set to "1" when there is at least one PE, FE, or BI in the RX FIFO. It is cleared by reading from the UART_LSR
			register, there are no subsequent errors in the FIFO.
			TEMT Transmitter Empty
6	R	0x1	If the FIFOs are disabled, this bit is set to "1" whenever the TX Holding Register (UART_THR) and the TX Shift Register are empty. If the FIFOs are enabled, this bit is set whenever the TX FIFO and the TX Shift Register are empty. In both cases, this bit is cleared when a byte is written to the TX data channel.

Offset:0x0014			Register Name: UART_LSR
Bit	Read/Write	Default/Hex	Description
5	R	0x1	THRE TX Holding Register Empty If the FIFOs are disabled, this bit is set to "1" when the TX Holding Register (UART_THR) is empty and ready to accept new data and it is cleared when the CPU writes to the TX Holding Register. If the FIFOs are enabled, this bit is set to "1" whenever the TX FIFO is empty and it is cleared when at least one byte is written to the TX FIFO.
4	R	0x0	BI Break Interrupt This is used to indicate the detection of a break sequence on the serial input data. If in UART mode (SIR_MODE == Disabled), it is set when the serial input, sir_in, is held in a logic '0' state for longer than the sum of <i>start time</i> + <i>data bits</i> + <i>parity</i> + <i>stop bits</i> . If in infrared mode (SIR_MODE == Enabled), it is set when the serial input, sir_in, is continuously pulsed to logic '0' for longer than the sum of <i>start time</i> + <i>data bits</i> + <i>parity</i> + <i>stop bits</i> . A break condition on serial input causes one and only one character, consisting of all zeros, to be received by the UART. In the FIFO mode, the character associated with the break condition is carried through the FIFO and is revealed when the character is at the top of the FIFO. Reading the UART_LSR clears the BI bit. In the non-FIFO mode, the BI indication occurs immediately and persists until the UART_LSR is read.

Offset:0x0014			Register Name: UART_LSR
Bit	Read/Write	Default/Hex	Description
3	RC	0x0	FE Framing Error This is used to indicate the occurrence of a framing error in the receiver. A framing error occurs when the receiver does not detect a valid STOP bit in the received data. In the FIFO mode, since the framing error is associated with a character received, it is revealed when the character with the framing error is at the top of the FIFO. When a framing error occurs, the UART tries to resynchronize. It does this by assuming that the error was due to the start bit of the next character and then continues receiving the other bit i.e. data, and/or parity and stop. It should be noted that the Framing Error (FE) bit (UART_LSR[3]) is set if a break interrupt has occurred, as indicated by Break Interrupt (BI) bit (UART_LSR[4]). 0: no framing error 1: framing error Reading the UART_LSR clears the FE bit.
2	RC	0x0	PE Parity Error This is used to indicate the occurrence of a parity error in the receiver if the Parity Enable (PEN) bit (UART_LCR[3]) is set. In the FIFO mode, since the parity error is associated with a character received, it is revealed when the character with the parity error arrives at the top of the FIFO. It should be noted that the Parity Error (PE) bit (UART_LSR[2]) is set if a break interrupt has occurred, as indicated by Break Interrupt (BI) bit (UART_LSR[4]). 0: no parity error 1: parity error Reading the UART_LSR clears the PE bit.

Offset:0x0014			Register Name: UART_LSR
Bit	Read/Write	Default/Hex	Description
1	RC	0x0	OE Overrun Error This occurs if a new data character was received before the previous data was read. In the non-FIFO mode, the OE bit is set when a new character arrives in the receiver before the previous character was read from the UART_RBR. When this happens, the data in the UART_RBR is overwritten. In the FIFO mode, an overrun error occurs when the FIFO is full and a new character arrives at the receiver. The data in the FIFO is retained and the data in the receive shift register is lost. 0: no overrun error 1: overrun error Reading the UART_LSR clears the OE bit.
0	R	0x0	DR Data Ready This is used to indicate that the receiver contains at least one character in the UART_RBR or the receiver FIFO. 0: no data ready 1: data ready This bit is cleared when the UART_RBR is read in non-FIFO mode, or when the receiver FIFO is empty, in FIFO mode. Note: Not use when the RXDMA master is enabled (rxdma_ctrl[0] is set to 1).

9.2.6.11 0x0018 UART Modem Status Register (Default Value: 0x0000_0000)

Offset: 0x0018			Register Name: UART_MSR
Bit	Read/Write	Default/Hex	Description
31:8	/	/	/
			DCD
	R	0x0	Line State of Data Carrier Detect
			This is used to indicate the current state of the modem control line dcd n. This bit is the complement of dcd n. When the Data
7			Carrier Detect input (dcd_n) is asserted it is an indication that the carrier has been detected by the modem or data set.
			0: dcd_n input is de-asserted (logic 1)
			1: dcd_n input is asserted (logic 0)

Offset:	0x0018		Register Name: UART_MSR
Bit	Read/Write	Default/Hex	Description
6	R	0x0	RI Line State of Ring Indicator This is used to indicate the current state of the modem control line ri_n. This bit is the complement of ri_n. When the Ring Indicator input (ri_n) is asserted it is an indication that a telephone ringing signal has been received by setting the modem or data. 0: ri_n input is de-asserted (logic 1) 1: ri_n input is asserted (logic 0)
5	R	0x0	DSR Line State of Data Set Ready This is used to indicate the current state of the modem control line dsr_n. This bit is the complement of the dsr_n. When the Data Set Ready input (dsr_n) is asserted, it is an indication that the modem or data set is ready to establish communication with UART. 0: dsr_n input is de-asserted (logic 1) 1: dsr_n input is asserted (logic 0) In Loopback Mode (UART_MCR[4] is set to 1), the DSR is the same as the DTR (UART_MCR[0]).
4	R	0x0	CTS Line State of Clear To Send This is used to indicate the current state of the modem control line cts_n. This bit is the complement of cts_n. When the Clear to Send input (cts_n) is asserted, it is an indication that the modem or data set is ready to exchange data with UART. 0: cts_n input is de-asserted (logic 1) 1: cts_n input is asserted (logic 0) In Loopback Mode (UART_MCR[4] = 1), the CTS is the same as the RTS (UART_MCR[1]).

Offset:	Offset: 0x0018		Register Name: UART_MSR
Bit	Read/Write	Default/Hex	Description
3	RC	0x0	DDCD Delta Data Carrier Detect This is used to indicate that the modem control line dcd_n has changed since the last time the UART_MSR was read. 0: no change on dcd_n since the last read of UART_MSR 1: change on dcd_n since the last read of UART_MSR Reading the UART_MSR clears the DDCD bit. Note: If the DDCD bit is not set and the dcd_n signal is asserted (low) and a reset occurs, then the DDCD bit is set when the reset is removed if the dcd_n signal remains asserted.
2	RC	0x0	TERI Trailing Edge Ring Indicator This is used to indicate that a change in the input ri_n (from an active-low to an inactive-high state) has occurred since the last time the UART_MSR was read. 0: no change on ri_n since the last read of UART_MSR 1: change on ri_n since the last read of UART_MSR Reading the UART_MSR clears the TERI bit.
1	RC	0x0	DDSR Delta Data Set Ready This is used to indicate that the modem control line dsr_n has changed since the last time the UART_MSR was read. 0: no change on dsr_n since the last read of UART_MSR 1: change on dsr_n since the last read of UART_MSR Reading the UART_MSR clears the DDSR bit. In Loopback Mode (UART_MCR[4] = 1), the DDSR reflects changes on the DTR (UART_MCR[0]). Note: If the DDSR bit is not set and the dsr_n signal is asserted (low) and a reset occurs, then the DDSR bit is set when the reset is removed if the dsr_n signal remains asserted.

Offset:	0x0018		Register Name: UART_MSR
Bit	Read/Write	Default/Hex	Description
			DCTS
			Delta Clear to Send
	RC	0x0	This is used to indicate that the modem control line cts_n has changed since the last time the UART_MSR was read.
			0: no change on ctsdsr_n since the last read of UART_MSR
0			1: change on ctsdsr_n since the last read of UART_MSR
0			Reading the UART_MSR clears the DCTS bit. In Loopback Mode (UART_MCR[4] = 1), the DCTS reflects changes on the RTS (UART_MCR[1]).
			Note: If the DCTS bit is not set and the cts_n signal is asserted
			(low) and a reset occurs, then the DCTS bit is set when the reset
			is removed if the cts_n signal remains asserted.

9.2.6.12 0x001C UART Scratch Register (Default Value: 0x0000_0000)

			is removed if the cts_n signal remains asserted.
)x001C l	JART Scratch R	egister (Default	t Value: 0x0000_0000)
Offset: 0x001C			Register Name: UART_SCH
Bit	Read/Write	Default/Hex	Description
31:8	1	1	/
			SCRATCH_REG
7:0	R/W	0x0	Scratch Register
			This register is for programmers to use as a temporary storage

9.2.6.13 0x007C UART Status Register (Default Value: 0x0000_0006)

Offset: 0x007C			Register Name: UART_USR
Bit	Read/Write	Default/Hex	Description
31:5	/	/	/
4	R	0x0	RFF RX FIFO Full This is used to indicate that the RX FIFO is completely full.
			0: RX FIFO not full 1: RX FIFO Full This bit is cleared when the RX FIFO is no longer full.

Offset:	Offset: 0x007C		Register Name: UART_USR
Bit	Read/Write	Default/Hex	Description
			RFNE
			RX FIFO Not Empty
			This is used to indicate that the RX FIFO contains one or more
3	R	0x0	entries.
			0: RX FIFO is empty
			1: RX FIFO is not empty
			This bit is cleared when the RX FIFO is empty.
			TFE
		0x1	TX FIFO Empty
2	-		This is used to indicate that the TX FIFO is completely empty.
2	R		0: TX FIFO is not empty
			1: TX FIFO is empty
			This bit is cleared when the TX FIFO is no longer empty.
			TFNF
		0x1	TX FIFO Not Full
1			This is used to indicate that the TX FIFO is not full.
1	R		0: TX FIFO is full
			1: TX FIFO is not full
			This bit is cleared when the TX FIFO is full.
			BUSY
0	R	0x0	UART Busy Bit
0			0: Idle or inactive
		r	1: Busy

9.2.6.14 0x0080 UART Transmit FIFO Level Register (Default Value: 0x0000_0000)

Offset:	0x0080		Register Name: UART_TFL
Bit	Read/Write	Default/Hex	Description
31:9	/	/	/
			TFL
8:0	R	0x0	TX FIFO Level
			The bit indicates the number of data entries in the TX FIFO.

9.2.6.15 0x0084 UART Receive FIFO Level Register (Default Value: 0x0000_0000)

Offset:	0x0084		Register Name: UART_RFL
Bit	Read/Write	Default/Hex	Description
31:9	/	/	/
8:0	R	0x0	RFL RX FIFO Level The bit indicates the number of data entries in the RX FIFO. Note: Not use when the RXDMA master is enabled (UART_RXDMA_CTRL[0] is set to 1).

9.2.6.16 0x0088 UART DMA Handshake Configuration Register (Default Value: 0x0000_00A5)

Offset: 0x0088			Register Name: UART_HSK
Bit	Read/Write	Default/Hex	Description
31:8	/	1	/
			Handshake configuration
7:0	R/W	0xA5	0xA5: DMA wait cycle mode
			0xE5: DMA handshake mode

9.2.6.17 0x008C UART DMA Request Enable Register(Default Value: 0x0000_0003)

Offset:	0x008C		Register Name: UART_DMA_REQ_EN
Bit	Read/Write	Default/Hex	Description
31:3	/	1	/
			DMA Timeout Enable
2	R/W	0x0	0: Disable
			1: Enable
			DMA TX REQ Enable
1	R/W	0x1	0: Disable
			1: Enable
			DMA RX REQ Enable
0	R/W	0x1	0: Disable
			1: Enable

9.2.6.18 0x00A4 UART Halt TX Register (Default Value: 0x0000_0000)

Bit Read/W 31:8 / 7 R/W 6 R/W 5 R/W 4 R/W	Offset: 0x00A4		Register Name: UART_HALT
7 R/W 6 R/W 5 R/W	Read/Write	Default/Hex	Description
6 R/W 5 R/W	/	/	/
5 R/W	R/W	0x0	PTE The sending of TX_REQ In DMA1 mode (FIFO on), if the PTE is set to 1 when the TFL in UART_TFL is less than or equal to the trigger value, the controller sends the DMA request. If the PTE is set to 0, when FIFO is empty, the controller sends the DMA request. The DMA request will stop when FIFO is full. In DMA0 mode, if the PTE is set to 1 and FIFO is on, when the TFL in UART_TFL is less than or equal to the trigger value, the controller sends DMA request. If the PTE is set to 1 and FIFO off, when the THR in UART_THR is empty, the controller sends DMA request. If the PTE is set to 0, when FIFO(FIFO Enable) or THR(FIFO Enable) is empty, the controller sends DMA request. Otherwise, the DMA request is cleared.
	R/W	0x0	DMA_PTE_RX The Transmission of RX_DRQ In DMA1 mode, when RFL is more than or equal to the trigger value, or a receive timeout has occurred, the controller sends DRQ. In DMA0 mode, when DMA_PTE_RX = 1 and FIFO is on, if RFL is more than or equal to trig, the controller sends DRQ, else DRQ is cleared. In other cases, once the received data is valid, the controller sends DRQ.
4 R/W	R/W	0x0	SIR_RX_INVERT SIR RX Pulse Polarity Invert O: Not invert receiver signal 1: Invert receiver signal
3 /		0x0	SIR_TX_INVERT SIR TX Pulse Polarity Invert 0: Not invert transmit pulse 1: Invert transmit pulse

Offset: 0x00A4		Register Name: UART_HALT
Read/Write	Default/Hex	Description
		CHANGE_UPDATE
		After the user uses UART_HALT[1] to change the baud rate or LCR
R/WAC	0x0	configuration, write 1 to update the configuration and wait this
,		bit to self-clear to 0 to finish update process. Writing 0 to this bit
		has no effect.
		1: Update trigger, self-clear to 0 when finish update.
		CHCFG_AT_BUSY
		This is an enable bit for the user to change LCR register
R/W	0x0	configuration and baud rate register (UART_DLH and UART_DLL)
		when the UART is busy.
		1: Enable change when busy
		HALT_TX
		Halt TX
		This register is used to halt transmissions for testing, so that the
		transmit FIFO can be filled by the master when FIFOs are
R/W	0x0	implemented and enabled.
		0 : Halt TX disabled
		1 : Halt TX enabled
		Note: If FIFOs are not enabled, the setting has no effect on
		operation.
	R/WAC	Read/Write Default/Hex R/WAC 0x0 R/W 0x0

9.2.6.19 0x00B0 UART DBG DLL Register (Default Value: 0x0000_0000)

Offset: 0x00B0			Register Name: UART_DBG_DLL
Bit	Read/Write Default/Hex		Description
31:8	1	1	/
7:0	R	0x0	DEBUG DLL

9.2.6.20 0x00B4 UART DBG DLH Register (Default Value: 0x0000_0000)

Offset: 0x00B4			Register Name: UART_DBG_DLH
Bit	Read/Write	Default/Hex	Description
31:8	/	/	/
7:0	R	0x0	DEBUG DLH

9.2.6.21 0x00F0 UART FIFO Clock Control Register (Default Value: 0x0000_0003)

Offset: 0x00F0			Register Name: UART_FCC
Bit	Read/Write	Default/Hex	Description
31:8	R	0x0	FIFO Depth
51.0	n	0x0	Indicates the depth of TX/RX FIFO
7:3	/	/	/
			RXFIFO Clock Mode
2	R/W	0x0	0: Sync mode, writing/reading clocks use apb clock
2			1: Sync mode, writing clock uses apb clock, reading clock uses ahb
			clock
		0x1	TX FIFO Clock Enable
1	R/W		0: Clock disable
			1: Clock enable
	R/W	0x1	RX FIFO Clock Enable
0			0: Clock disable
			1: Clock enable

9.2.6.22 0x0100 UART RXDMA Control Register (Default Value: 0x0000_0000)

Offset:	0x0100		Register Name: UART_RXDMA_CTRL
Bit	Read/Write	Default/Hex	Description
31:24	/	1	/
			RXDMA Timeout Threshold
23:8	R/W	0x0	Unit is 1 UART bit time
			Note that this field is only configurable when RXDMA Busy is 0.
7	/	/	/
			RXDMA Timeout Enable
6	R/W	0x0	Once enable, the DMA starts a transfer even the data entries in
			RX FIFO do not reach BLK_SIZE.
			Note that this field is only configurable when RXDMA Busy is 0.

Offset:	Dx0100		Register Name: UART_RXDMA_CTRL
Bit	Read/Write	Default/Hex	Description
5:4	R/W	0x0	RXDMA AHB Burst Mode Set for AHB port burst supported INCR8 is recommended, while INCR16 may be unsupported due to the system bus. 00: SIGNLE 01: INCR4 10: INCR8 11: INCR16 Note that this field is only configurable while RXDMA Busy is 0.
3:2	R/W	0x0	RXDMA BLK SIZE Every time when data entries in RX FIFO reach BLK_SIZE, start a DMA block transfer. It is recommended that the block size no more than RX FIFO Depth. 00: 8 bytes 01: 16 bytes 10: 32 bytes 11: 64 bytes Note that this field is only configurable while RXDMA Busy is 0.
1	R/W	0x0	RXDMA Mode 0: Continous 1: Limited When data transferred reaches the limited count set in RXDMA LIMIT, the DMA stops and the RXDMA Start bit is cleared automatically. Note that this field is only configurable while RXDMA Busy is 0.
0	R/W	0x0	 RXDMA Enable 0: RXDMA Disable 1: RXDMA Enable Note that if the software turns off this bit, the RXDMA will stop after the current block transfer completes, then the software should do a reset to the RX FIFO before re-enable.

9.2.6.23 0x0104 UART RXDMA Start Register (Default Value: 0x0000_0000)

Offset:	0x0104		Register Name: UART_RXDMA_STR
Bit	Read/Write	Default/Hex	Description
31:2	1	/	/
			RXDMA Start
0	R/WAC	0x0	Only valid when RXDMA mode is set to 1, it is auto cleared when
			data transferred reaches the RXDMA Limit Size.

9.2.6.24 0x0108 UART RXDMA Status Register (Default Value: 0x0000_0000)

Offset: 0x0108			Register Name: UART_RXDMA_STA
Bit	Read/Write	Default/Hex	Description
31:1	/	/	
			Buffer Read Address Updating
			0: Buffer Read Address Register is ready for updating
1	R	0x0	1: Buffer Read Address Register is busy for updating
			The software should not update Buffer Read Address Register
			until this bit is 0.
			RXDMA BUSY
0	R	0x0	0: RXDMA is idle
			1: RXDMA is busy

9.2.6.25 0x010C UART RXDMA Limit Register (Default Value: 0x0000_0000)

Offset:	0x010C		Register Name: UART_RXDMA_LMT
Bit	Read/Write	Default/Hex	Description
31:16	/	/	/
			RXDMA Limit Size
15:0	R/W	0x0	Only valid when RXDMA Mode is set to 1, and the unit is byte.
			Note that this field is only configurable while RXDMA Busy is 0.

9.2.6.26 0x0110 UART RXDMA Buffer Start Address Low Register (Default Value: 0x0000_0000)

Offset: 0x0110			Register Name: UART_RXDMA_SADDRL
Bit	Read/Write	Default/Hex	Description
			RXDMA Buffer Start Address [31:0]
31:0	R/W	0x0	Byte address
			Note that this field is only configurable while RXDMA Busy is 0.

9.2.6.27 0x0114 UART RXDMA Buffer Start Address High Register (Default Value: 0x0000_0000)

Offset: 0x0114			Register Name: UART_RXDMA_SADDRH
Bit	Read/Write	Default/Hex	Description
31:2	/	/	
			RXDMA Buffer Start Address [33:32]
1:0	R/W	0x0	Byte address
			Note that this field is only configurable while RXDMA Busy is 0.

9.2.6.28 0x0118 UART RXDMA Buffer Length Register (Default Value: 0x0000_0000)

Offset: 0x0118			Register Name: UART_RXDMA_BL
Bit	Read/Write	Default/Hex	Description
31:16	1	1	1
			RXDMA Buffer Length
15:0	R/W	0x0	Unit is byte
			Note that this field is only configurable while RXDMA Busy is 0.

9.2.6.29 0x0120 UART RXDMA Interrupt Enable Register (Default Value: 0x0000_0000)

Offset:	0x0120		Register Name: UART_RXDMA_IE
Bit	Read/Write	Default/Hex	Description
31:4	/	1	/
2	D (14)	00	RXDMA Buffer Overrun
3	R/W 0x0		RXDMA Buffer Overrun Interrupt Enable

Offset:	0x0120		Register Name: UART_RXDMA_IE
Bit	Read/Write	Default/Hex	Description
2	2 2 44	0x0	RXDMA Timeout Done
2	R/W		RXDMA Timeout Done Interrupt Enable
1	5.44	R/W 0x0	RXDMA BLK Done
	r, vv		RXDMA BLK Done Interrupt Enable
0		0x0	RXDMA Limit Done
0	R/W		RXDMA Limit Done Interrupt Enable

9.2.6.30 0x0124 UART RXDMA Interrupt Status Register (Default Value: 0x0000_0000)

Offset: 0x0124			Register Name: UART_RXDMA_IS
Bit	Read/Write	Default/Hex	Description
31:4	/	/	
3	R/W1C	0x0	RXDMA Buffer Overrun
5	N/ WIC	UXU	Asserted when the RXDMA buffer is overflow.
2	R/W1C	0x0	RXDMA Timeout Done
2	N/ WIC		Asserted when a DMA transfer caused by timeout is done.
1	1 R/W1C	0x0	RXDMA BLK Done
1			Asserted when a DMA block transfer is done.
			RXDMA Limit Done
0	R/W1C	0x0	Asserted when data transferred reaches limit size in RXDMA Limit
		-	Mode.

9.2.6.31 0x0128 UART RXDMA Write Address Low Register (Default Value: 0x0000_0000)

Offset: 0x0128			Register Name: UART_RXDMA_WADDRL
Bit	Read/Write	Default/Hex	Description
			RXDMA Current Write Address[31:0]
31:0	R	0x0	Updated when every DMA transfer is done
			It is byte address.

9.2.6.32 0x012C UART RXDMA Write Address High Register (Default Value: 0x0000_0000)

Offset: 0x012C			Register Name: UART_RXDMA_WADDRH	
Bit Read/Write Default/Hex		Default/Hex	Description	
31:2	1:2 / /		/	
			RXDMA Current Write Address[33:32]	
1:0	1:0 R 0x0		Updated when every DMA transfer is done	
			It is byte address.	

9.2.6.33 0x0130 UART RXDMA Read Address Low Register (Default Value: 0x0000_0000)

Offset: 0x0130			Register Name: UART_RXDMA_RADDRL	
Bit Read/Write Default/Hex		Default/Hex	Description	
			RXDMA Current Read Address[31:0]	
	R/W	0x0	Software should update this register after reading data in RXDMA	
			Buffer in time	
31:0			It is byte address.	
51.0			The software should not update Buffer Read Address Register	
			until UART_RXDMA_STA[1] is 0. The software should update Read	
			Address High Register first, and then Read Address Low Register,	
			even there is no change on Read Address High Register.	

9.2.6.34 0x0134 UART RXDMA Read Address High Register (Default Value: 0x0000_0000)

Offset: 0x0134			Register Name: UART_RXDMA_RADDRH	
Bit Read/Write Default/Hex		Default/Hex	Description	
31:2	1	1	1	
	R/W C		RXDMA Current Read Address[33:32] Software should update this register after reading data in RXDMA Buffer in time.	
1:0		0x0	It is byte address. The software should not update Buffer Read Address Register until until UART_RXDMA_STA[1] is 0. The software should update Read Address High Register first and then Read Address Low Register, even there is no change on Read Address High Register.	

9.2.6.35 0x0138 UART RXDMA Data Count Register (Default Value: 0x0000_0000)

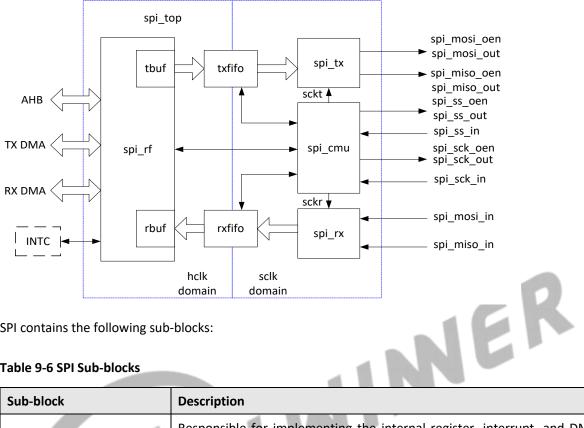
Offset: 0x0138			Register Name: UART_RXDMA_DCNT
Bit Read/Write Default/Hex		Default/Hex	Description
31:16	1	/	/
15:0	R	0x0	RXDMA Data Count Only valid while RXDMA Mode is set to 1, it is used for counting the data transferred by RXDMA, and is cleared when reaches RXDMA Limit Size. Its unit is byte.

9.3 SPI

9.3.1 Overview

The Serial Peripheral Interface (SPI) is a full-duplex, synchronous, four-wire serial communication interface between a CPU and SPI-compliant external devices. The SPI controller contains a 64 x 8 bits receiver buffer (RXFIFO) and a 64 x 8 bits transmit buffer (TXFIFO). It can work in master mode and slave mode.

The SPI has the following features:


- Full-duplex synchronous serial interface
- Master/slave configurable
- 8-bit wide by 64-entry FIFO for both transmit and receive data
- Polarity and phase of the Chip Select (SPI_SS) and SPI Clock (SPI_SCLK) are configurable NER
- Supports interrupts and DMA
- Supports mode0, mode1, mode2, and mode3
- Supports 3-wire/4-wire SPI
- Supports programmable serial data frame length: 1 bit to 32 bits
- Supports standard SPI, dual-output/dual-input SPI, dual I/O SPI, quad-output/quad-input SPI
- Supports maximum IO rate of the mass production: 100 MHz

9.3.2 **Block Diagram**

Figure 9-20 shows a block diagram of the SPI.

Figure 9-20 SPI Block Diagram

SPI contains the following sub-blocks:

Table 9-6 SPI Sub-bloc	kS
------------------------	----

Sub-block	Description		
spi_rf	Responsible for implementing the internal register, interrupt, and DMA Request.		
spi_tbuf	The data length transmitted from AHB to TXFIFO is converted into 8 bits, then the data is written into the RXFIFO.		
spi_rbuf	The block is used to convert the RXFIFO data into the reading data length of AHB.		
txfifo, rxfifo	The data transmitted from the SPI to the external serial device is written into the TXFIFO; the data received from the external serial device into SPI is pushed into the RXFIFO.		
spi_cmu	Responsible for implementing SPI bus clock, chip select, internal sample, and the generation of transfer clock.		
spi_tx	Responsible for implementing SPI data transfer, the interface of the internal TXFIFO, and status register.		
spi_rx	Responsible for implementing SPI data receive, the interface of the internal RXFIFO, and status register.		

9.3.3 Functional Description

9.3.3.1 External Signals

The following table describes the external signals of SPI. The MOSI and MISO are bidirectional I/O, when SPI is as a master device, the CLK and CS are the output pin; when SPI is as a slave device, the CLK and CS are the input pin. When using SPI, the corresponding PADs are selected as SPI function via section 9.7 "<u>GPIO</u>".

Signal	Description	Туре
	SPIO chip select signal, low active	
SPIO-CS	When the device is not selected, data will not be accepted via the SI	I/O
	pin, and the SO pin will stop transmission.	
	SPIO clock signal	
SPIO-CLK	This pin is used to provide a clock to the device and is used to control	I/O
	the flow of data to and from the device.	
SPIO-MOSI	SPIO master data out, slave data in	I/O
SPIO-MISO	SPIO master data in, slave data out	I/O
	Write protection and low active	
SPIO-WP	It also can be used for serial data input and output for SPI Quad Input	I/O
	or Quad Output mode.	
	When the device is selected and a serial sequence is underway, the	
	HOLD pin can be used to temporarily pause the serial	
	communication with the master device without deselecting or	1/0
SPIO-HOLD	resetting the serial sequence. While the HOLD pin is asserted, the SO	
	pin is at high impedance, and all transitions on the SCK pin and data	
	on the SI pin are ignored.	
	It also can be used for serial data input and output for SPI Quad Input	
	or Quad Output mode.	

Table 9-7 SPI External Signals

9.3.3.2 Clock Sources

The SPI controller gets 5 different clock sources, users can select one of them to make SPI clock source. The following table describes the clock sources for SPI. For more details on the clock setting, configuration, and gating information, see section 3.3 "<u>CCU</u>".

Table 9-8 SPI Clock Sources

Clock Sources	Description
HOSC	24 MHz Crystal

Copyright©Allwinner Technology Co.,Ltd. All Rights Reserved.

Clock Sources	Description	
PLL_PERI(1X)	Peripheral Clock, default value is 600 MHz	
PLL_PERI(2X)	Peripheral Clock, default value is 1200 MHz	
PLL_AUDIO0(DIV2)	Audio Clock, the default value is 1536 MHz	
PLL_AUDIO0(DIV5)	Audio Clock, the default value is 614.4 MHz	

9.3.3.3 Typical Application

Figure 9-21 shows the application block diagram when the SPI master device is connected to a slave device.

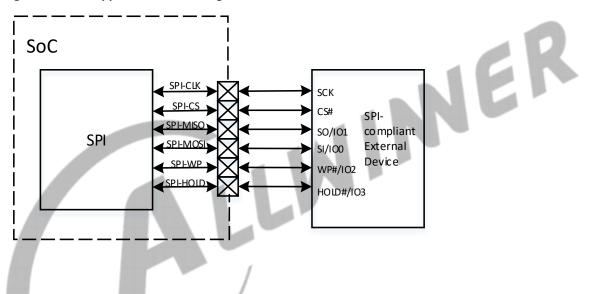
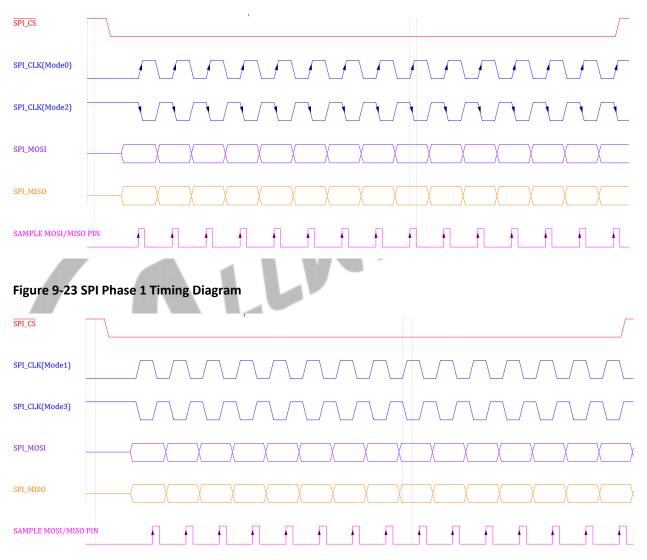


Figure 9-21 SPI Application Block Diagram

9.3.3.4 SPI Transmit Format

The SPI supports 4 different formats for data transfer. The software can select one of the four modes in which the SPI works by setting the bit1 (Polarity) and bit0 (Phase) of <u>SPI_TCR</u>. The SPI controller master uses the SPI_SCLK signal to transfer data in and out of the shift register. Data is clocked using any one of four programmable clock phase and polarity combinations.

The CPOL (<u>SPI_TCR[1]</u>) defines the polarity of the clock signal (SPI_SCLK). The SPI_SCLK is a high level when CPOL is '1' and it is a low level when CPOL is '0'. The CPHA (<u>SPI_TCR[0]</u>) decides whether the leading edge of SPI_SCLK is used to setup or sample data. The leading edge is used to setup data when CPHA is '1', and sample data when CPHA is '0'. The following table lists the four modes.


Table 9	-9 SPI	Transmit	Format
---------	--------	----------	--------

Mode	Polarity (CPOL)	Phase (CPHA)	Leading Edge	Trailing Edge
Mode0	0	0	Sample on the rising edge	Setup on the falling edge

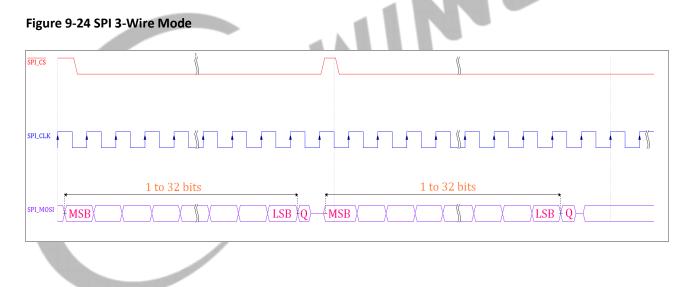
Mode	Polarity (CPOL)	Phase (CPHA)	Leading Edge	Trailing Edge
Mode1	0	1	Setup on the rising edge	Sample on the falling edge
Mode2	1	0	Sample on the falling edge	Setup on the rising edge
Mode3	1	1	Setup on the falling edge	Sample on the rising edge

Figure 9-22 and Figure 9-23 describe four waveforms for SPI_SCLK.

Figure 9-22 SPI Phase 0 Timing Diagram

9.3.3.5 SPI Master and Slave Mode

The SPI controller can be configured to a master or slave device. The master mode is selected by setting the MODE bit (<u>SPI_GCR[1]</u>); the slave mode is selected by clearing the MODE bit.

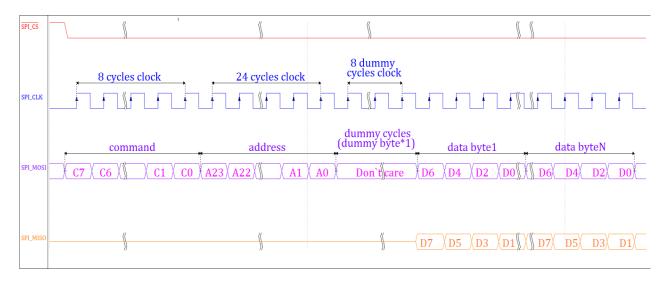


In master mode, the SPI_CLK is generated and transmitted to the external device, and the data from the TX FIFO is transmitted on the MOSI pin, the data from the slave device is received on the MISO pin and sent to RX FIFO. The Chip Select (SPI_SS) is an active low signal, and it must be set low before the data are transmitted or received. The SPI_SS can be selected the auto control mode or software manual control mode. When using the auto control, the SS_OWNER (<u>SPI_TCR[6]</u>) must be cleared (default value is 0); when using the manual control, the SS_OWNER must be set. And the level of SPI_SS is controlled by SS_LEVEL (<u>SPI_TCR[7]</u>).

In slave mode, after the software selects the MODE bit (<u>SPI_GCR[1]</u>) to '0', it waits for master initiate a transaction. When the master asserts SPI_SS, then SPI_CLK is transmitted to the slave device, the slave data is transmitted from TX FIFO on the MISO pin and the data from the MOSI pin is received in RX FIFO.

9.3.3.6 SPI 3-Wire Mode

The SPI 3-wire mode is only valid when the SPI controller work in master mode, and is selected when the Work Mode Select bit (<u>SPI_BATC[1:0]</u>) is equal to 0x2. And in the 3-wire mode, the input data and the output data use the same single data line. The following figure describes the 3-wire mode.



9.3.3.7 SPI Dual-Input/Dual-Output and Dual I/O Mode

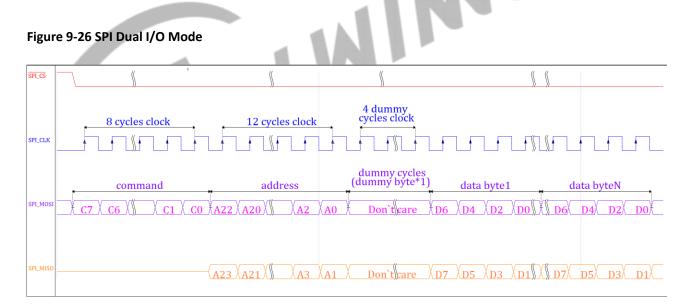
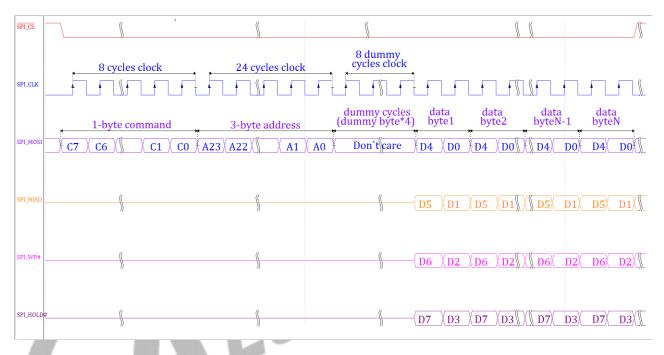

The dual read mode (SPI x2) is selected when the DRM is set in <u>SPI_BCC[</u>28]. Using the dual mode allows data to be transferred to or from the device at double the rate of standard single mode, the data can be read at fast speed using two data bits (MOSI and MISO) at a time. The following figure describes the dual-input/dual-output SPI (Figure 9-25) and the dual I/O SPI (Figure 9-26).

Figure 9-25 SPI Dual-Input/Dual-Output Mode

In the dual-input/dual-output SPI mode, the command, address, and the dummy bytes output in a unit of a single bit in serial mode through the SPI_MOSI line, only the data bytes are output (write) and input (read) in a unit of dual bits through the SPI_MOSI and SPI_MISO.


In the dual I/O SPI mode, only the command bytes output in a unit of a single bit in serial mode through the SPI_MOSI line. The address bytes and the dummy bytes output in a unit of dual bits through the SPI_MOSI and SPI_MISO. And the data bytes output (write) and input (read) in a unit of dual bits through the SPI_MOSI and SPI_MISO.

9.3.3.8 SPI Quad-Input/Quad-Output Mode

The quad read mode (SPI x4) is selected when the Quad_EN is set in <u>SPI_BCC[29]</u>. Using the quad mode allows data to be transferred to or from the device at 4 times the rate of standard single mode, the data can be read at fast speed using four data bits (MOSI, MISO, IO2 (WP#) and IO3 (HOLD#)) at the same time. The following figure describes the quad-input/quad-output SPI.

Figure 9-27 SPI Quad-Input/Quad-Output Mode

In the quad-input/quad-output SPI mode, the command, address, and the dummy bytes output in a unit of a single bit in serial mode through SPI_MOSI line. Only the data bytes output (write) and input (read) in a unit of quad bits through the SPI_MOSI, SPI_MISO, SPI_WP#, and SPI_HOLD#.

9.3.3.9 Transmission/Reception Bursts in Master Mode

In SPI master mode, the transmission and reception bursts (byte in unit) are configured before the SPI transfers the serial data between the processor and external device. The transmission bursts are written in MWTC (bit[23:0]) of the <u>SPI Master Transmit Counter Register</u>. The transmission bursts in single mode before automatically sending dummy bursts are written in STC (bit[23:0]) of the <u>SPI Master Transmit Counter Register</u>. For dummy data, the SPI controller can automatically send before receiving by writing DBC (bit[27:24]) in the <u>SPI Master Transmit Counter Register</u>. If users do not use the SPI controller to send dummy data automatically, then the dummy bursts are used as the transmission counters to write together in MWTC (bit[23:0]) of the <u>SPI Master Transmit Counter Register</u>. In master mode, the total burst numbers are written in MBC (bit[23:0]) of the <u>SPI Master Transmit Counter Register</u>. When all transmission and reception bursts are transferred, the SPI controller will send a completed interrupt, at the same time, the SPI controller will clear <u>DBC</u>, <u>MWTC</u>, and <u>MBC</u>.

9.3.3.10 SPI Sample Mode and Run Clock Configuration

The SPI controller runs at 3 kHz–100 MHz at its interface to external SPI devices. The internal SPI clock should run at the same frequency as the outgoing clock in the master mode. The SPI clock is selected from different clock sources, the SPI must configure different work mode. There are three work modes: normal sample mode, delay half-cycle sample mode, delay one-cycle sample mode. The Delay half-cycle sample mode is the default mode of the SPI controller. When the SPI runs at 40 MHz or below 40 MHz, the SPI can work at normal sample mode or delay half-cycle sample mode. When the SPI runs over 80 MHz, setting the SDC bit in the <u>SPI Transfer</u> <u>Control Register</u> to '1' makes the internal read sample point with a half-cycle delay of SPI_CLK, which is used in high speed read operation to reduce the error caused by the time delay of SPI_CLK between master and slave. Table 9-10 and Table 9-11 show the different configurations of the SPI sample mode.

SPI Sample Mode	SDM(bit13)	SDC(bit11)	Run Clock
normal sample	1	0	<=24 MHz
delay half cycle sample	0	0	<=40 MHz
delay one cycle sample	0	1	>=80 MHz

Table 9-10 SPI Old Sample Mode and Run Clock

The remaining spectrum is not recommended. Because when the output delay of SPI flash (refer to the datasheet of the manufactures for the specific delay time) is the same with the half-cycle time of SPI working clock, the variable edge of the output data for the device bumps into the clock sampling edge of the controller, so setting 1 cycle of sampling delay would cause stability problem.

Table 9-11 SPI New Sample Mode

SPI Sample Mode	SDM (bit13)	SDC (bit11)	SDC1 (bit15)
normal sample	1	0	0
delay half cycle sample	0	0	0
delay one cycle sample	0	1	0
delay 1.5 cycle sample	1	1	0
delay 2 cycle sample	1	0	1
delay 2.5 cycle sample	0	0	1
delay 3 cycle sample	0	1	1

9.3.3.11 SPI Error Conditions

If any error conditions occur, the hardware will set the corresponding status bits in the <u>SPI Interrupt Status</u> <u>Register</u> and stop the transfer. For the SPI controller, the following error scenarios can happen.

1. TX_FIFO Underrun

The TX_FIFO underrun happens when the CPU/DMA reads data from TX FIFO when it is empty. In the case, the SPI controller will end the transaction and flag the error bit along with the TF_UDF bit in the <u>SPI</u> <u>Interrupt Status Register</u>. The SPI controller will generate an interrupt if interrupts are enabled. The software has to clear the error bit and the TF_UDF bit. To start a new transaction, the software has to reset the FIFO by writing to the SRST (soft reset) bit in the <u>SPI Global Control Register</u>.

2. TX_FIFO Overflow

The TX_FIFO overflow happens when the CPU/DMA writes data into the TX FIFO when it is full. In the case, the SPI controller will end the transaction and flag the error bit along with the TF_OVF bit in the <u>SPI</u> <u>Interrupt Status Register</u>. The SPI controller will generate an interrupt if interrupts are enabled. The software has to clear the error bit and the TF_OVF bit. To start a new transaction, the software has to reset the FIFO by writing to the SRST (soft reset) bit in the <u>SPI Global Control Register</u>.

3. RX_FIFO Underrun

The RX_FIFO underrun happens when the CPU/DMA reads data from RX FIFO when it is empty. In the case, the SPI controller will end the transaction and flag the error bit along with the RF_UDF bit in the <u>SPI Interrupt Status Register</u>. The SPI controller will generate an interrupt if interrupts are enabled. The software has to clear the error bit and the RF_UDF bit. To start a new transaction, the software has to reset the fifo by writing to the SRST (soft reset) bit in the <u>SPI Global Control Register</u>.

4. RX_FIFO Overflow

The RX_FIFO overflow happens when the CPU/DMA writes data into the RX FIFO when it is full. In the case, the SPI controller will end the transaction and flag the error bit along with the RF_OVF bit in the <u>SPI</u> <u>Interrupt Status Register</u>. The SPI controller will generate an interrupt if interrupts are enabled. The software has to clear the error bit and the RF_OVF bit. To start a new transaction, the software has to reset the FIFO by writing to the SRST (soft reset) bit in the <u>SPI Global Control Register</u>.

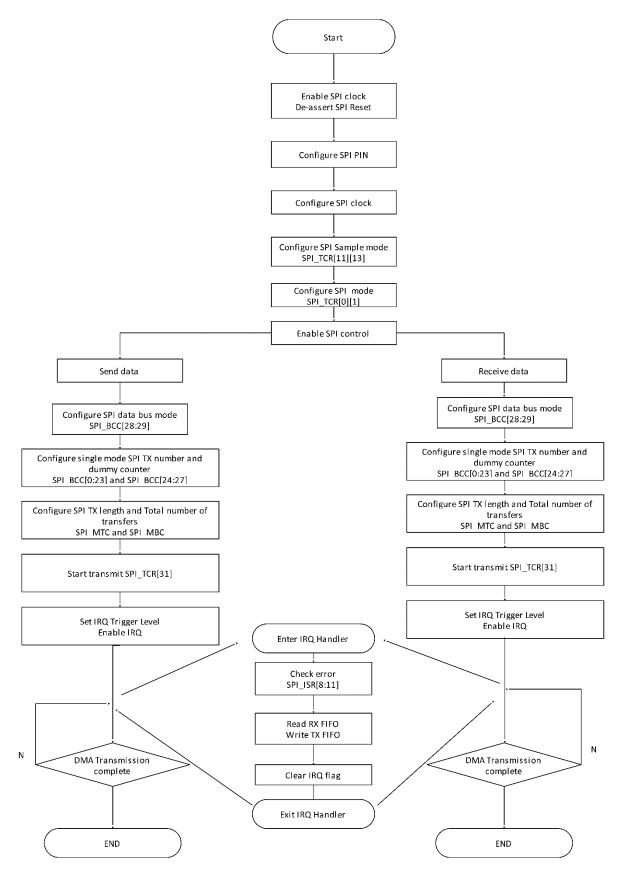
9.3.4 Programming Guidelines

9.3.4.1 Writing/Reading Data Process

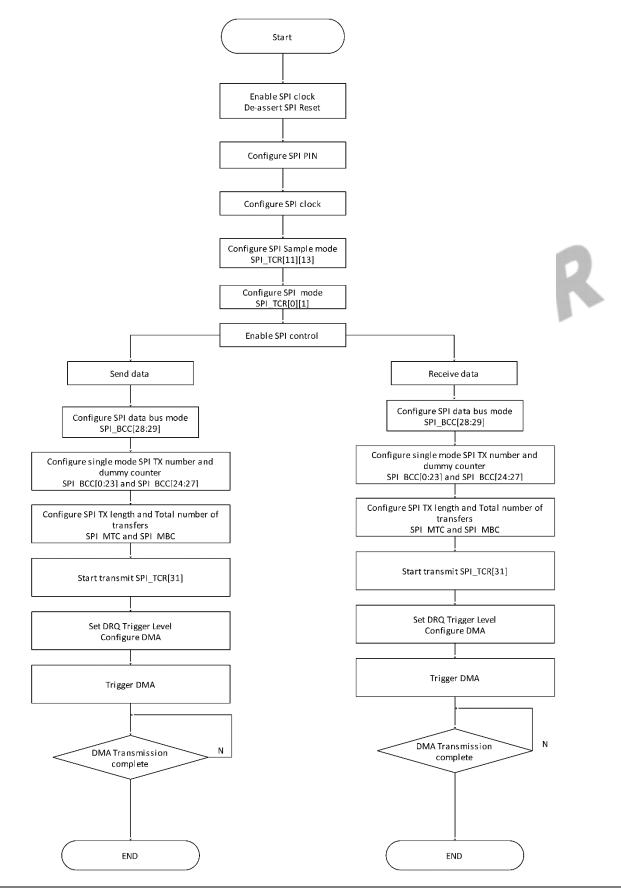
The SPI transfers serial data between the processor and the external device. The CPU mode and DMA mode are the two main operational modes for SPI. For each SPI, the data is simultaneously transmitted (shifted out serially) and received (shifted in serially). The SPI has 2 channels, including the TX channel and RX channel. The TX channel has the path from TX FIFO to the external device. The RX channel has the path from the external device to RX FIFO.

Write Data: The CPU or DMA must write data on the <u>SPI_TXD</u> register, the data on the register are automatically moved to TX FIFO.

Read Data: To read data from RX FIFO, the CPU or DMA must access the <u>SPI_RXD</u> register and the data are automatically sent to the <u>SPI_RXD</u> register.


In CPU or DMA mode, the SPI sends a completed interrupt (<u>SPI_ISR[TC]</u>) to the processor after each transmission is complete.

CPU Mode


Figure 9-28 SPI Write/Read Data in CPU Mode

DMA Mode

Figure 9-29 SPI Write/Read Data in DMA Mode

Copyright©Allwinner Technology Co., Ltd. All Rights Reserved.

9.3.4.2 Calibrate Delay Chain

The SPI has one delay chain which is used to generate delay to make proper timing between the internal SPI clock signal and data signals. Delay chain is made up of 64 delay cells. The delay time of one delay cell can be estimated through delay chain calibration.

The steps to calibrate delay chain are as follows:

- **Step 1** Enable SPI. To calibrate the delay chain by the operation registers in SPI, the SPI must be enabled through AHB reset and AHB clock gating control registers.
- **Step 2** Configure a proper clock for SPI. The calibration delay chain is based on the clock for SPI from CCU.
- **Step 3** Set proper initial delay value. Write 0xA0 to the <u>SPI Sample Delay Control Register</u> to set initial delay value 0x20 to delay chain. Then write 0x0 to the <u>SPI Sample Delay Control Register</u> to clear this value.
- Step 4 Write 0x8000 to the SPI Sample Delay Control Register to start to calibrate the delay chain.
- Step 5 Wait until the flag (bit14 in the SPI Sample Delay Control Register) of calibration done is set. The number of delay cells is shown at the bit[13:8] of the SPI Sample Delay Control Register. The delay time generated by these delay cells is equal to the cycle of the SPI clock nearly. This value is the result of calibration.
- **Step 6** Calculate the delay time of one delay cell according to the cycle of the SPI clock and the result of calibration.

9.3.5 Register List

Module Name	Base Address
SPIO	0x04025000

De state a Name	0/()	Description
Register Name	Offset	Description
SPI_GCR	0x0004	SPI Global Control Register
SPI_TCR	0x0008	SPI Transfer Control Register
SPI_IER	0x0010	SPI Interrupt Control Register
SPI_ISR	0x0014	SPI Interrupt Status Register
SPI_FCR	0x0018	SPI FIFO Control Register
SPI_FSR	0x001C	SPI FIFO Status Register
SPI_WCR	0x0020	SPI Wait Clock Register
SPI_SAMP_DL	0x0028	SPI Sample Delay Control Register
SPI_MBC	0x0030	SPI Master Burst Counter Register

Register Name	Offset	Description
SPI_MTC	0x0034	SPI Master Transmit Counter Register
SPI_BCC	0x0038	SPI Master Burst Control Register
SPI_BATCR	0x0040	SPI Bit-Aligned Transfer Configure Register
SPI_BA_CCR	0x0044	SPI Bit-Aligned Clock Configuration Register
SPI_TBR	0x0048	SPI TX Bit Register
SPI_RBR	0x004C	SPI RX Bit Register
SPI_NDMA_MODE_CTL	0x0088	SPI Normal DMA Mode Control Register
SPI_TXD	0x0200	SPI TX Data Register
SPI_RXD	0x0300	SPI RX Data Register

9.3.6 Register Description

9.3.6.1 0x0004 SPI Global Control Register (Default Value: 0x0000_0080)

Offset:0x0004			Register Name: SPI_GCR
Bit	Read/Write	Default/Hex	Description
			SRST
			Soft reset
31	R/WAC	0x0	Writing '1' to this bit will clear the SPI controller, and auto clear to
			'0' when reset operation completes.
			Writing '0' to this bit has no effect.
30:8	1	1	/
			TP_EN
			Transmit Pause Enable
			In master mode, it is used to control the transmit state machine to
7	R/W	0x1	stop smart burst sending when RX FIFO is full.
			0: Normal operation, ignore RXFIFO status
			1: Stop transmit data when RXFIFO full
			Cannot be written when XCH=1.
6:3	/	/	/
			MODE_SELEC
			Sample Timing Mode Select
2	R/W	0x0	0: Old mode of Sample Timing
			1: New mode of Sample Timing
			Cannot be written when XCH=1.

Offset:0x0004			Register Name: SPI_GCR	
Bit	Read/Write	Default/Hex	Description	
		0x0	MODE	
			SPI Function Mode Select	
1	1 R/W		0: Slave mode	
			1: Master mode	
			Cannot be written when XCH=1.	
		0x0	EN	
			SPI Module Enable Control	
0	R/W		0: Disable	
			1: Enable	
			After transforming from bit_mode to byte_mode, it must enable	
			the SPI module again.	

9.3.6.2 0x0008 SPI Transfer Control Register (Default Value: 0x0000_0087)

			the SPI module again.	
0x0008 SPI Transfer Control Register (Default Value: 0x0000_0087)				
Offset:	0x0008		Register Name: SPI_TCR	
Bit	Read/Write	Default/Hex	Description	
31	R/WAC	0x0	XCH Exchange Burst In master mode, it is used to start SPI burst. O: Idle 1: Initiates exchange. Writing "1" to this bit will start the SPI burst, and will auto-clear after finishing the bursts transfer specified by SPI_MBC. Writing "1" to SRST (SPI_GCR[31]) will also clear this bit. Writing 'O' to this bit has no effect. Cannot be written when XCH=1.	
30:16	/	/	/	
15	R/W	0x0	 SDC1 Master Sample Data Control register1 Set this bit to '1' to make the internal read sample point with a delay of half-cycle of SPI_CLK. It is used in high speed read operation to reduce the error caused by the time delay of SPI_CLK between master and slave. 0: normal operation, do not delay the internal read sample point 1: delay the internal read sample point Cannot be written when XCH=1. 	

Offset:	Offset: 0x0008		Register Name: SPI_TCR
Bit	Read/Write	Default/Hex	Description
14	R/W	0x0	SDDM Sending Data Delay Mode 0: Normal sending 1: Delay sending Set the bit to "1" to make the data that should be sent with a delay of half-cycle for SPI_CLK in dual IO mode of SPI mode0. Cannot be written when XCH=1.
13	R/W	0x0	SDM Master Sample Data Mode 0: Delay sample mode 1: Normal sample mode In normal sample mode, the SPI master samples the data at the correct edge for each SPI mode; In delay sample mode, the SPI master samples data at the edge that is half cycle delayed by the correct edge defined in respective SPI mode. Cannot be written when XCH=1.
12	R/W	0x0	FBS First Transmit Bit Select 0: MSB first 1: LSB first Cannot be written when XCH=1.
11	R/W	0x0	 SDC Master Sample Data Control Set this bit to '1' to make the internal read sample point with a delay of half-cycle for SPI_CLK. It is used in high speed read operation to reduce the error caused by the time delay of SPI_CLK between master and slave. 0: Normal operation, do not delay the internal read sample point 1: Delay the internal read sample point Cannot be written when XCH=1.
10	R/W	0x0	RPSM Rapids Mode Select Select rapid mode for high speed write. 0: Normal write mode 1: Rapid write mode Cannot be written when XCH=1.

Offset:	Offset: 0x0008		Register Name: SPI_TCR
Bit	Read/Write	Default/Hex	Description
			DDB
			Dummy Burst Type
9	R/W	0x0	0: The bit value of dummy SPI burst is zero
			1: The bit value of dummy SPI burst is one
			Cannot be written when XCH=1.
			DHB
			Discard Hash Burst
			In master mode, it controls whether discarding unused SPI bursts
8	R/W	0x0	0: Receiving all SPI bursts in the BC period
			1: Discard unused SPI bursts, only fetching the SPI bursts during
			the dummy burst period. The burst number is specified by TC.
			Cannot be written when XCH=1.
			SS_LEVEL
			When control SS signal manually (SS_OWNER (SPI_TCR[6])==1), set
7	R/W	0x1	this bit to '1' or '0' to control the level of SS signal.
/			0: Set SS to low
			1: Set SS to high
			Cannot be written when XCH=1.
			SS_OWNER
			SS Output Owner Select
			Usually, the controller sends the SS signal automatically with data
			together. When this bit is set to 1, the software must manually
6	R/W	0x0	write SS_LEVEL (SPI_TCR[7]) to 1 or 0 to control the level of the SS signal.
			0: SPI controller
			1: Software
			Cannot be written when XCH=1.
			SS_SEL
			SPI Chip Select
			Select one of four external SPI Master/Slave Devices
5:4	R/W		00: SPI_SSO will be asserted
		0x0	01: SPI_SS1 will be asserted
			10: SPI_SS2 will be asserted
			11: SPI_SS3 will be asserted
			Cannot be written when XCH=1.

Offset: 0x0008			Register Name: SPI_TCR
Bit	Read/Write	Default/Hex	Description
			SSCTL
			In master mode, this bit selects the output waveform for the SPI_SSx signal. Only valid when SS_OWNER (SPI_TCR[6])= 0.
3	R/W	0x0	0: SPI_SSx remains asserted between SPI bursts
			1: Negate SPI_SSx between SPI bursts
			Cannot be written when XCH=1.
			SPOL
		0x1	SPI Chip Select Signal Polarity Control
2	R/W		0: Active high polarity (0 = Idle)
			1: Active low polarity (1 = Idle)
			Cannot be written when XCH=1.
1	R/W	0x1	CPOL SPI Clock Polarity Control 0: Active high polarity (0 = Idle) 1: Active low polarity (1 = Idle) Cannot be written when XCH=1.
0	R/W	0x1	CPHA SPI Clock/Data Phase Control 0: Phase 0 (Leading edge for sample data)
			1: Phase 1 (Leading edge for setup data) Cannot be written when XCH=1.

9.3.6.3 0x0010 SPI Interrupt Control Register (Default Value: 0x0000_0000)

Offset: 0x0010			Register Name: SPI_IER
Bit	Read/Write	Default/Hex	Description
31:14	/	/	/
			SS_INT_EN
			SSI Interrupt Enable
13	R/W	0x0	Chip select signal (SSx) from the valid state to the invalid state
			0: Disable
			1: Enable

Offset:	Offset: 0x0010		Register Name: SPI_IER
Bit	Read/Write	Default/Hex	Description
12	R/W	0x0	TC_INT_EN Transfer Completed Interrupt Enable 0: Disable 1: Enable
11	R/W	0x0	TF_UDR_INT_EN TXFIFO Underrun Interrupt Enable 0: Disable 1: Enable
10	R/W	0x0	TF_OVF_INT_EN TX FIFO Overflow Interrupt Enable 0: Disable 1: Enable
9	R/W	0x0	RF_UDR_INT_EN RXFIFO Underrun Interrupt Enable 0: Disable 1: Enable
8	R/W	0x0	RF_OVF_INT_EN RX FIFO Overflow Interrupt Enable 0: Disable 1: Enable
7	1	1	/ /
6	R/W	0x0	TF_FUL_INT_EN TX FIFO Full Interrupt Enable 0: Disable 1: Enable
5	R/W	0x0	TX_EMP_INT_EN TX FIFO Empty Interrupt Enable 0: Disable 1: Enable
4	R/W	0x0	TX_ERQ_INT_EN TX FIFO Empty Request Interrupt Enable 0: Disable 1: Enable
3	/	/	/

Offset	: 0x0010		Register Name: SPI_IER	
Bit	Read/Write	Default/Hex	Description	
			RF_FUL_INT_EN	
2	R/W	0x0	RX FIFO Full Interrupt Enable	
2	K/ VV	UXU	0: Disable	
			1: Enable	
			RX_EMP_INT_EN	
1	R/W	0x0	RX FIFO Empty Interrupt Enable	
T	r, v		0: Disable	
			1: Enable	
		0x0	RF_RDY_INT_EN	
0			RX FIFO Ready Request Interrupt Enable	
0	R/W		0: Disable	
			1: Enable	
Dx0014 \$	x0014 SPI Interrupt Status Register (Default Value: 0x0000_0032)			

9.3.6.4 0x0014 SPI Interrupt Status Register (Default Value: 0x0000_0032)

Offset:	0x0014		Register Name: SPI_ISR
Bit	Read/Write	Default/Hex	Description
31:14	1	1	
			SSI
13	R/W1C	0x0	SS Invalid Interrupt
13	NY WIC	0.00	When SSI is 1, it indicates that SPI_SS has changed from valid state
			to invalid state. Writing 1 to this bit clears it.
			тс
			Transfer Completed
			In master mode, it indicates that all bursts specified by SPI_MBC
	R/W1C	0x0	have been exchanged. In other conditions, when setting, this bit
12			indicates that all the data in TXFIFO has been loaded in the Shift
			register, and the Shift register has shifted out all the bits. Writing
			1 to this bit clears it.
			0: Busy
			1: Transfer completed

Offset:	0x0014		Register Name: SPI_ISR
Bit	Read/Write	Default/Hex	Description
11	R/W1C	0x0	 TF_UDF TXFIFO Underrun This bit is set when the TXFIFO is underrun. Writing 1 to this bit clears it. 0: TXFIFO is not underrun 1: TXFIFO is underrun
10	R/W1C	0x0	TF_OVF TXFIFO Overflow This bit is set when the TXFIFO is overflowed. Writing 1 to this bit clears it. 0: TXFIFO is not overflowed 1: TXFIFO is overflowed
9	R/W1C	0x0	RX_UDF RXFIFO Underrun When set, this bit indicates that RXFIFO is underrun. Writing 1 to this bit clears it. 0: RXFIFO is not underrun 1: RXFIFO is underrun
8	R/W1C	0x0	RX_OVF RXFIFO Overflow When set, this bit indicates that RXFIFO has overflowed. Writing 1 to this bit clears it. 0: RXFIFO is not overflowed 1: RXFIFO is overflowed
7	/	1	/
6	R/W1C	0x0	 TX_FULL TXFIFO Full This bit is set when the TXFIFO is full. Writing 1 to this bit clears it. 0: TXFIFO is not Full 1: TXFIFO is Full
5	R/W1C	0x1	TX_EMP TXFIFO Empty This bit is set when the TXFIFO is empty. Writing 1 to this bit clears it. 0: TXFIFO contains one or more words 1: TXFIFO is empty

Offset	Offset: 0x0014		Register Name: SPI_ISR
Bit	Read/Write	Default/Hex	Description
			TX_READY
			TXFIFO Ready
			0: TX_WL > TX_TRIG_LEVEL
4	R/W1C	0x1	1: TX_WL <= TX_TRIG_LEVEL
			This bit will be immediately set to 1 if TX_WL <= TX_TRIG_LEVEL.
			Writing "1" to this bit clears it. The TX_WL is the water level of
			TXFIFO.
3	/	/	/
			RX_FULL
			RXFIFO Full
2	R/W1C	0x0	This bit is set when the RXFIFO is full. Writing 1 to this bit clears it.
			0: Not Full
			1: Full
			RX_EMP
			RXFIFO Empty
1	R/W1C	0x1	This bit is set when the RXFIFO is empty. Writing 1 to this bit clears
T	N/ WIC		it.
			0: Not empty
			1: empty
			RX_RDY
			RXFIFO Ready
			0: RX_WL < RX_TRIG_LEVEL
0	R/W1C	0x0	1: RX_WL >= RX_TRIG_LEVEL
			This bit is will be immediately set to 1 if RX_WL >= RX_TRIG_LEVEL.
			Writing "1" to this bit clears it. The RX_WL is the water level of
			RXFIFO.

9.3.6.5 0x0018 SPI FIFO Control Register (Default Value: 0x0040_0001)

Offset: 0x0018			Register Name: SPI_FCR
Bit	Read/Write	Default/Hex	Description
31	R/WAC	0x0	TX_FIFO_RST TX FIFO Reset Writing '1' to this bit will reset the control portion of the TX FIFO
			and auto clear to '0' when completing reset operation, writing to '0' has no effect.

Offset:	Offset: 0x0018		Register Name: SPI_FCR
Bit	Read/Write	Default/Hex	Description
30	R/W	0x0	TF_TEST_ENB TX Test Mode Enable 0: Disable 1: Enable In normal mode, the TXFIFO can only be read by the SPI controller, writing '1' to this bit will switch the read and write function of the TXFIFO to AHB bus. This bit is used to test the TXFIFO, do not set in normal operation, and do not set RF_TEST and TF_TEST at the same time.
29:25	/	/	/
24	R/W	0x0	TF_DRQ_EN TXFIFO DMA Request Enable 0: Disable 1: Enable
23:16	R/W	0x40	TX_TRIG_LEVEL TXFIFO Empty Request Trigger Level
15	R/WAC	0x0	RF_RST RXFIFO Reset Writing '1' to this bit will reset the control portion of the receiver FIFO, and auto clear to '0' when completing reset operation, writing '0' to this bit has no effect.
14	R/W	0x0	RF_TEST RX Test Mode Enable 0: Disable 1: Enable In normal mode, the RXFIFO can only be written by the SPI controller, writing '1' to this bit will switch the read and write function of RXFIFO to AHB bus. This bit is used to test the RXFIFO, do not set in normal operation, and do not set RF_TEST and TF_TEST at the same time.
13:9	/	1	/
8	R/W	0x0	RF_DRQ_EN RX FIFO DMA Request Enable 0: Disable 1: Enable
7:0	R/W	0x1	RX_TRIG_LEVEL RX FIFO Ready Request Trigger Level

9.3.6.6 0x001C SPI FIFO Status Register (Default Value: 0x0000_0000)

Offset:	0x001C		Register Name: SPI_FSR
Bit	Read/Write	Default/Hex	Description
31	R	0x0	TB_WR
			TX FIFO Write Buffer Write Enable
			TB_CNT
30:28	R	0x0	TX FIFO Write Buffer Counter
			These bits indicate the number of words in TX FIFO Write Buffer
27:24	/	/	/
			TF_CNT
			TX FIFO Counter
			These bits indicate the number of words in TX FIFO
23:16	R	0x0	0: 0 byte in TX FIFO
25.10	K		1: 1 byte in TX FIFO
			64: 64 bytes in TX FIFO
			other: Reserved
15	R	0x0	RB_WR
13	ĸ	0,0	RX FIFO Read Buffer Write Enable
			RB_CNT
14:12	R	0x0	RX FIFO Read Buffer Counter
			These bits indicate the number of words in RX FIFO Read Buffer
11:8	/	/	1
			RF_CNT
			RX FIFO Counter
			These bits indicate the number of words in RX FIFO
7:0	R	0x0	0: 0 byte in RX FIFO
7.0		UXU	1: 1 byte in RX FIFO
			64: 64 bytes in RX FIFO
			other: Reserved

9.3.6.7 0x0020 SPI Wait Clock Register (Default Value: 0x0000_0000)

Offset: 0x0020			Register Name: SPI_WCR
Bit	Read/Write	Default/Hex	Description
31:20	1	/	/
19:16	R/W	0x0	 SWC Dual mode direction switch wait clock counter (for master mode only). These bits control the number of wait states to be inserted before starting dual data transfer in dual SPI mode. The SPI module counts SPI_SCLK by SWC for delaying the next word data transfer. 0: No wait states inserted n: n SPI_SCLK wait states inserted
15:0	R/W	0x0	Cannot be written when XCH=1. WCC Wait Clock Counter (In master mode) These bits control the number of wait states to be inserted in data transfers. The SPI module counts SPI_SCLK by WCC for delaying the next word data transfer. 0: No wait states inserted n: n SPI_SCLK wait states inserted Cannot be written when XCH=1.

9.3.6.8 0x0028 SPI Sample Delay Control Register (Default Value: 0x0000_2000)

Offset:	0x0028		Register Name: SPI_SAMP_DL
Bit	Read/Write	Default/Hex	Description
31:16	1	1	/
			SAMP_DL_CAL_START
15	R/W	0x0	Sample Delay Calibration Start
15			When set, the sample delay chain calibration is started.
			Cannot be written when XCH=1.
			SAMP_DL_CAL_DONE
		0x0	Sample Delay Calibration Done
14	R		When set, it means that sample delay chain calibration is done and
			the result of calibration is shown in SAMP_DL.
			Cannot be written when XCH=1.

Offset: 0x0028			Register Name: SPI_SAMP_DL
Bit	Read/Write	Default/Hex	Description
			SAMP_DL
			Sample Delay
			It indicates the number of delay cells corresponding to the current
			card clock. The delay time generated by these delay cells is equal
13:8	R	0x20	to the cycle of the card clock nearly.
			Generally, it is necessary to do drive delay calibration when the
			card clock is changed.
			This bit is valid only when SAMP_DL_CAL_DONE is set.
			Cannot be written when XCH=1.
			SAMP_DL_SW_EN
			Sample Delay Software Enable
7	R/W	0x0	When set, it indicates that enable sample delay specified at
			SAMP_DL_SW.
			Cannot be written when XCH=1.
6	/	/	
			SAMP_DL_SW
			Sample Delay Software
			The relative delay between the clock line and command line, data
5:0	R/W	0x0	lines.
			It can be determined according to the value of SAMP_DL, the cycle
			of the card clock, and the input timing requirement of the device.
			Cannot be written when XCH=1.

9.3.6.9 0x0030 SPI Master Burst Counter Register (Default Value: 0x0000_0000)

Offset:	0x0030		Register Name: SPI_MBC
Bit	Read/Write	Default/Hex	Description
31:24	/	/	/

Offset: 0x0030			Register Name: SPI_MBC
Bit	Read/Write	Default/Hex	Description
			MBC
			Master Burst Counter
			In master mode, this field specifies the total burst number. The
			total transfer data include the TXD, RXD, and dummy burst.
23:0	R/W	0x0	0: 0 burst
			1: 1 burst
			N: N bursts
			Cannot be written when XCH=1.

9.3.6.10 0x0034 SPI Master Transmit Counter Register (Default Value: 0x0000_0000)

Offset	0x0034		Register Name: SPI_MTC
Bit	Read/Write	Default/Hex	Description
31:24	1	1	/
23:0	R/W	0x0	MWTC Master Write Transmit Counter In master mode, this field specifies the burst number that should be sent to TXFIFO before automatically sending dummy bursts. For saving bus bandwidth, the dummy bursts (all zero bits or all one bits) are sent by SPI Controller automatically. 0: 0 burst
			1: 1 burst N: N bursts Cannot be written when XCH=1.

9.3.6.11 0x0038 SPI Master Burst Control Counter Register (Default Value: 0x0000_0000)

Offset:	0x0038		Register Name: SPI_BCC
Bit	Bit Read/Write Default/Hex		Description
31:30	/	/	/

Offset	0x0038		Register Name: SPI_BCC
Bit	Read/Write	Default/Hex	Description
29	R/W	0x0	Quad_EN Quad Mode Enable The quad mode includes Quad-Input and Quad-Output. 0: Quad mode disable 1: Quad mode enable Cannot be written when XCH=1.
28	R/W	0x0	DRM Master Dual Mode RX Enable It is only valid when Quad_Mode_EN=0. 0: RX uses the single-bit mode 1: RX uses the dual-bit mode Cannot be written when XCH=1.
27:24	R/W	0x0	DBC Master Dummy Burst Counter In master mode, this field specifies the burst number that should be sent before receiving in dual SPI mode. The data does not care by the device. 0: 0 burst 1: 1 burst N: N bursts Cannot be written when XCH=1.
23:0	R/W	0x0	STC Master Single Mode Transmit Counter In master mode, this field specifies the burst number that should be sent in the single mode before automatically sending dummy bursts. This is the first transmit counter in all bursts. 0: 0 burst 1: 1 burst N: N bursts Cannot be written when XCH=1.

9.3.6.12 0x0040 SPI Bit-Aligned Transfer Configure Register (Default Value: 0x0000_00A0)

Offset:	Offset: 0x0040		Register Name: SPI_BATC
Bit	Read/Write	Default/Hex	Description
31	R/WAC	0x0	TCE Transfer Control Enable In master mode, it is used to start to transfer the serial bit frame, it is only valid when Work Mode Select==0x10/0x11. 0: Idle 1: Initiates transfer Writing "1" to this bit will start to transfer serial bit frame (the value comes from the SPI TX Bit Register or SPI RX Bit Register), and will auto-clear after the bursts transfer completely. Writing '0' to this bit has no effect.
30	R/W	0x0	MSMS Master Sample Standard O: Delay Sample Mode 1: Standard Sample Mode In Standard Sample Mode, the SPI master samples the data at the standard rising edge of SCLK for each SPI mode; In Delay Sample Mode, the SPI master samples data at the edge that is half cycle delayed by the standard rising edge of SCLK defined in respective SPI mode.
29:26	/	1	7
25	R/W1C	0x0	TBC Transfer Bits Completed When set, this bit indicates that the last bit of the serial data frame in SPI TX Bit Register (or SPI RX Bit Register) has been transferred completely. Writing 1 to this bit clears it. 0: Busy 1: Transfer Completed It is only valid when Work Mode Select==0x10/0x11.
24	R/W	0x0	TBC_INT_EN Transfer Bits Completed Interrupt Enable 0: Disable 1: Enable It is only valid when Work Mode Select==0x10/0x11.

Offset:	Offset: 0x0040		Register Name: SPI_BATC
Bit	Read/Write	Default/Hex	Description
21:16	R/W	0x00	Configure the length of serial data frame (burst) of RX 000000: 0 bit 000001: 1 bit 100000: 32 bits Other values: reserved It is only valid when Work Mode Select==0x10/0x11, and cannot be written when TCE (bit31) is 1.
15:14	/	/	/
13:8	R/W	0x00	TX_FRM_LEN Configure the length of serial data frame (burst) of TX 000000: 0 bit 000001: 1 bit 100000: 32 bits Other values: reserved It is only valid when Work Mode Select==0x10/0x11, and cannot be written when TCE (bit31) is 1.
7	R/W	0x1	 SS_LEVEL When control the SS signal manually, set this bit to '1' or '0' to control the level of SS signal. O: Set SS to low 1: Set SS to high It is only valid when Work Mode Select==0x10/0x11, and only work in Mode0, cannot be written when TCE (bit31) is 1.
6	R/W	0x0	SS_OWNER SS Output Owner Select Usually, the controller sends the SS signal automatically with data together. When this bit is set to 1, the software must manually write SS_LEVEL to 1 or 0 to control the level of the SS signal. 0: SPI controller 1: Software It is only valid when Work Mode Select==0x10/0x11, and only work in Mode0, cannot be written when TCE (bit31) is 1.

Offset: 0x0040			Register Name: SPI_BATC
Bit	Read/Write	Default/Hex	Description
			SPOL
			SPI Chip Select Signal Polarity Control
5	R/W	0x1	0: Active high polarity (0 = Idle)
			1: Active low polarity (1 = Idle)
			It is only valid when Work Mode Select==0x10/0x11, and only work
			in Mode0, cannot be written when TCE (bit31) is 1.
4	/	/	/
			SS_SEL
		0x0	SPI Chip Select
			Select one of four external SPI Master/Slave Devices
			00: SPI_SS0 will be asserted
3:2	R/W		01: SPI_SS1 will be asserted
			10: SPI_SS2 will be asserted
			11: SPI_SS3 will be asserted
			It is only valid when Work Mode Select= $=0x10/0x11$, and only
			work in Mode0, cannot be written when TCE (bit31) is 1.
			Work Mode Select
			00: Data frame is byte aligned in standard SPI, dual-output/dual
1:0	DAM		input SPI, dual IO SPI, and quad-output/quad-input SPI
	R/W	0x0	01: Reserved
			10: Data frame is bit aligned in 3-wire SPI
			11: Data frame is bit aligned in standard SPI
			1

9.3.6.13 0x0044 SPI Bit-Aligned CLOCK Configuration Register (Default Value: 0x0000_0000)

Offset: 0x0044			Register Name: SPI_BA_CCR
Bit	Read/Write	Default/Hex	Description
31:8	/	/	/
7:0	R/W	0x0	CDR_N Clock Divide Rate (Master Mode Only) The SPI_SCLK is determined according to the following equation: SPI_CLK = Source_CLK / (2*(CDR_N + 1)). This register is only valid when Work Mode Select==0x10/0x11.

_

9.3.6.14 0x0048 SPI TX Bit Register (Default Value: 0x0000_0000)

Offset: 0x0048			Register Name: SPI_TBR	
Bit Read/Write Default/Hex		Default/Hex	Description	
			VTB	
			The Value of the Transmit Bits	
31:0	R/W	0x0	This register is used to store the value of the transmitted serial data	
51.0	frame. In the process of transmission, the LSB is transmitt	frame.		
		In the process of transmission, the LSB is transmitted first.		
			This register is only valid when Work Mode Select==0x10/0x11.	

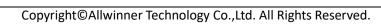
9.3.6.15 0x004C SPI RX Bit Register (Default Value: 0x0000_0000)

Offset: 0x004C			Register Name: SPI_RBR	
Bit Read/Write Default/Hex		Default/Hex	Description	
31:0	R/W	0×0	VRB The Value of the Receive Bits This register is used to store the value of the received serial data frame. In the process of transmission, the LSB is transmitted first. This register is only valid when Work Mode Select==0x10/0x11.	

9.3.6.16 0x0088 SPI Normal DMA Mode Control Register (Default Value: 0x0000_00E5)

Offset: 0x0088			Register Name: SPI_NDMA_MODE_CTL
Bit Read/Write Default/Hex		Default/Hex	Description
31:8	7	1	/
			SPI_ACT_M
			SPI NDMA Active Mode
7:6	R/W 0x11 00: dma_active is low 01: dma_active is high 10: dma_active is controlled by dma_request (D 11: dma_active is controlled by controller	00: dma_active is low	
7:0		UX11	01: dma_active is high
			10: dma_active is controlled by dma_request (DRQ)
			11: dma_active is controlled by controller
	2.444		SPI_ACK_M
			SPI NDMA Acknowledge Mode
5	R/W	0x1	0: active fall do not care ack
			1: active fall must after detect ack is high

Offset	Offset: 0x0088		Register Name: SPI_NDMA_MODE_CTL	
Bit Read/Write Default/Hex		Default/Hex	Description	
4:0	R/W	0x05	SPI_DMA_WAIT The counts of hold cycles from DMA last signal high to dma_active high	


9.3.6.17 0x0200 SPI TX Data Register (Default Value: 0x0000_0000)

Offset: 0x0200		Register Name: SPI_TXD	
Bit Read/Write	Default/Hex	Description	
31:0 R/W	0x0	TDATA Transmit Data This register can be accessed in the byte, half-word, or word unit by AHB. In the byte accessing method, if there are rooms in TXFIFO, one burst data is written to TXFIFO and the depth is increased by 1. In the half-word accessing method, two SPI burst data are written and the TXFIFO depth is increased by 2. In the word accessing method, four SPI burst data are written and the TXFIFO depth is increased by 4. Note: This address is writable-only if TF_TEST is '0', and if TF_TEST is set to '1', this address is readable and writable to test the TXFIFO through the AHB bus.	

9.3.6.18 0x0300 SPI RX Data Register (Default Value: 0x0000_0000)

Offset: 0x0300			Register Name: SPI_RXD	
Bit	Read/Write	Default/Hex	Description	
31:0	R	0x0	RDATA Receive Data This register can be accessed in the byte, half-word, or word unit by AHB. In the byte accessing method, if there are data in RXFIFO, the top word is returned and the RXFIFO depth is decreased by 1. In the half-word accessing method, two SPI bursts are returned and the RXFIFO depth is decreased by 2. In the word accessing method, the four SPI bursts are returned and the RXFIFO depth is decreased by 4. Note: This address is readable-only if RF_TEST is '0', and if RF_TEST is set to '1', this address is readable and writable to test the RXFIFO through the AHB bus.	

SPI DBI 9.4

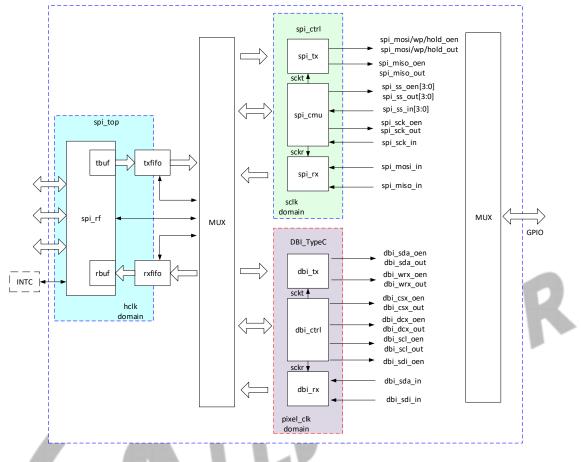
9.4.1 **Overview**

The D1s provides a 3/4 line SPI display bus interface (SPI DBI) for video data transmission. It supports DBI mode or SPI mode. The DBI mode is compatible with multiple video data formats at the same time. The SPI mode is used for low-cost display schemes.

The SPI mode has the following features:

- Full-duplex synchronous serial interface
- Master/slave configurable
- 8-bit wide by 64-entry FIFO for both transmit and receive data
- Polarity and phase of the Chip Select (SPI_SS) and SPI Clock (SPI_SCLK) are configurable NER
- Supports interrupts and DMA
- Supports mode0, mode1, mode2, and mode3
- Supports 3-wire/4-wire SPI
- Supports programmable serial data frame length: 1 bit to 32 bits
- Supports standard SPI, dual-output/dual-input SPI, dual I/O SPI, guad-output/guad-input SPI
- Supports maximum IO rate of the mass production: 100 MHz

The DBI mode has the following features:


- Supports DBI Type C 3 Line/4 Line Interface Mode
- Supports 2 Data Lane Interface Mode
- Supports data source from CPU or DMA
- Supports RGB111/444/565/666/888 video format
- Maximum resolution of RGB666 240 x 320@30Hz with single data lane
- Maximum resolution of RGB888 240 x 320@60Hz or 320 x 480@30Hz with dual data lane
- Supports Tearing effect
- Supports software flexible control video frame rate

9.4.2 **Block Diagram**

Figure 9-30 shows a block diagram of the SPI_DBI.

Figure 9-30 SPI_DBI Block Diagram

SPI_DBI contains the following sub-blocks:

Table	9-12 SPI	_DBI S	ub-block	s
-				

Sub-block	Description
spi_rf	Responsible for implementing the internal register, interrupt, and DMA Request.
spi_tbuf	The data length transmitted from AHB to TXFIFO is converted into 8 bits, then the data is written into the RXFIFO.
spi_rbuf	The block is used to convert the RXFIFO data into the reading data length of AHB.
txfifo, rxfifo	The data transmitted from the SPI to the external serial device is written into the TXFIFO; the data received from the external serial device into SPI is pushed into the RXFIFO.
spi_cmu	Responsible for implementing SPI bus clock, chip select, internal sample, and the generation of transfer clock.
spi_tx	Responsible for implementing SPI data transfer, the interface of the internal TXFIFO, and status register.

1

Sub-block Description		
spi_rx	Responsible for implementing SPI data receive, the interface of the internal RXFIFO, and status register.	
dbi_ctrl	Responsible for implementing DBI bus clock, chip select, data command select, RGB format reshape.	
dbi_tx	Responsible for implementing DBI data transfer, the interface of the internal TXFIFO, and status register.	
dbi_rx	Responsible for implementing DBI data receive, the interface of the internal RXFIFO, and status register.	

Functional Description 9.4.3

9.4.3.1 External Signals

The following table describes the external signals of SPI_DBI. When using SPI_DBI, the corresponding PADs are selected as SPI_DBI function via section 9.7 "GPIO".

External Sign	al	Description	Туре
	DBI-CSX	Chip select signal, low active	I/O
	DBI-SCLK	Serial clock signal	I/O
	DBI-SDO	Data output signal	I/O
DBI Mode	DBI-SDI	Data input signal, the data is sampled on the rising edge and the falling edge	I/O
	DBI-TE	Tearing effect input, it is used to capture the external TE signal edge.	
	DBI-DCX	DCX pin is the select output signal of data and command. DCX = 0: register command; DCX = 1: data or parameter.	I/O
	DBI-WRX	When DBI operates in dual data lane format, the RGB666 format 2 can use WRX to transfer data	I/O
	SPI1-CS	SPI1 chip select signal, low active When the device is not selected, data will not be accepted via the SI pin, and the SO pin will stop transmission.	
SPI Mode	SPI1-CLK	SPI1 clock signal This pin is used to provide a clock to the device and is used to control the flow of data to and from the device.	I/O
	SPI1-MOSI	SPI1 master data out, slave data in	1/0

Table 9-13 SPI_DBI External Signals

External Signa	l	Description	Туре
	SPI1-MISO	SPI1 master data in, slave data out	I/O
		Write protection and active low	
	SPI1-WP	It also can be used for serial data input and output for SPI Quad Input or Quad Output mode.	I/O
	SPI1-HOLD	When the device is selected and a serial sequence is underway, the HOLD pin is can be used to temporarily pause the serial communication with the master device without deselecting or resetting the device serial sequence. While the HOLD pin is asserted, the SO pin is at high impedance, and all transitions on the SCK pin and data on the SI pin are ignored. It also can be used for serial data input and output for SPI Quad Input or Quad Output mode.	1/0
Clock Sources		NER	

9.4.3.2 Clock Sources

The SPI_DBI controller gets 5 different clock sources, users can select one of them to make SPI_DBI clock source. The following table describes the clock sources for SPI_DBI. For more details on the clock setting, configuration, and gating information, see section 3.3 "CCU".

	Table	9-14 S	PI DBI	Clock	Sources
--	-------	--------	--------	-------	---------

Clock Sources	Description	
HOSC	24 MHz Crystal	
PLL_PERI(1X)	Peripheral Clock, the default value is 600 MHz	
PLL_PERI(2X)	Peripheral Clock, the default value is 1200 MHz	
PLL_AUDIO0(DIV2)	Audio Clock, the default value is 1536 MHz	
PLL_AUDIO0(DIV5)	Audio Clock, the default value is 614.4 MHz	

9.4.3.3 Typical Application

Figure 9-31 shows the application block diagram when the SPI master device is connected to a slave device.

Figure 9-31 SPI Application Block Diagram

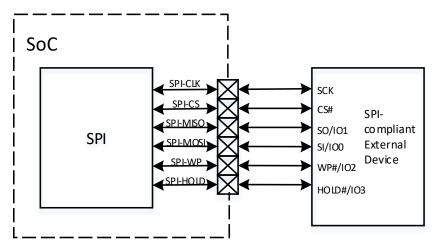
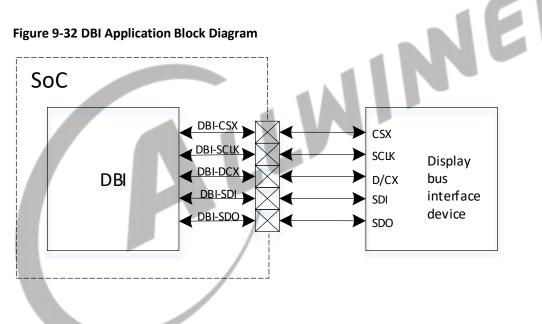



Figure 9-32 shows the application block diagram when the DBI master device is connected to a display bus interface device.

9.4.3.4 SPI Transmission Format

The SPI supports 4 different formats for data transmission. The software can select one of the four modes in which the SPI works by setting the bit1 (Polarity) and bit0 (Phase) of <u>SPI_TCR</u>. The SPI controller master uses the SPI_SCLK signal to transfer data in and out of the shift register. Data is clocked using any one of four programmable clock phase and polarity combinations.

The CPOL (<u>SPI_TCR</u>[1]) defines the polarity of the clock signal (SPI_SCLK). The SPI_SCLK is a high level when CPOL is '1' and it is a low level when CPOL is '0'. The CPHA (<u>SPI_TCR</u>[0]) decides whether the leading edge of SPI_SCLK is used to setup or sample data. The leading edge is used to setup data when CPHA is '1', and sample data when CPHA is '0'. The following table lists the four modes.

Table 9-15 SPI Transmit Format

SPI Mode	Polarity (CPOL)	Phase (CPHA)	Leading Edge	Trailing Edge
mode0	0	0	Sample on the rising edge	Setup on the falling edge
mode1	0	1	Setup on the rising edge	Sample on the falling edge
mode2	1	0	Sample on the falling edge	Setup on the rising edge
mode3	1	1	Setup on the falling edge	Sample on the rising edge

Figure 9-33 and Figure 9-34 describe four waveforms for SPI_SCLK.

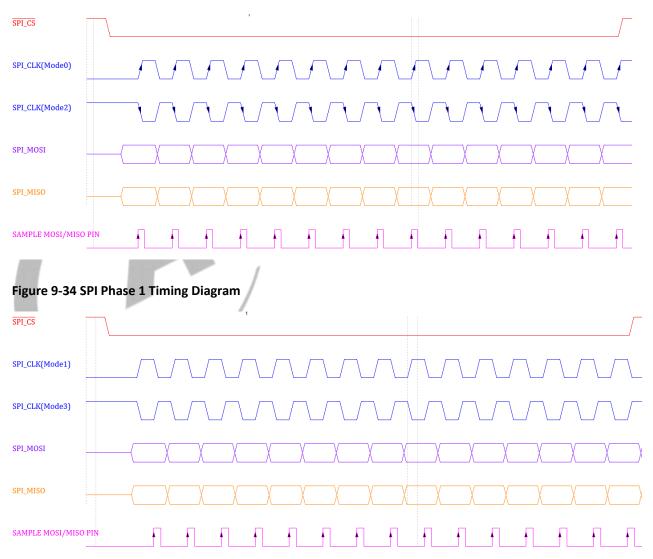
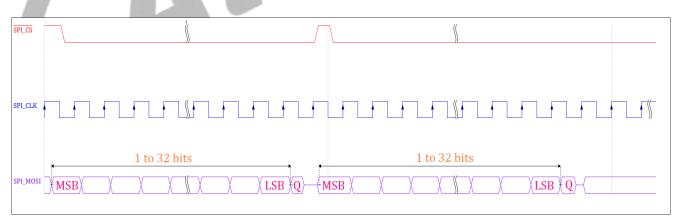


Figure 9-33 SPI Phase 0 Timing Diagram

9.4.3.5 SPI Master and Slave Mode

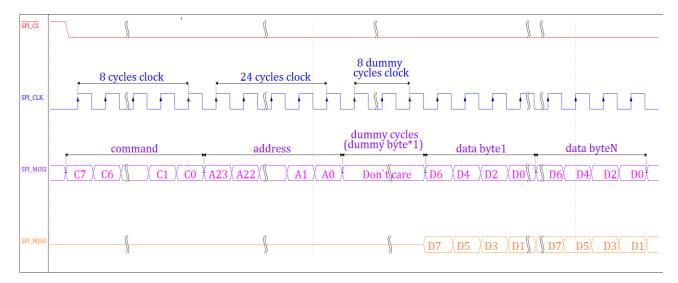

The SPI controller can be configured to a master or slave device. The master mode is selected by setting the MODE bit (<u>SPI_GCR[1]</u>); the slave mode is selected by clearing the MODE bit.

In master mode, the SPI_CLK is generated and transmitted to the external device, and the data from the TX FIFO is transmitted on the MOSI pin, the data from the slave is received on the MISO pin and sent to RX FIFO. The Chip Select (SPI_SS) is an active low signal, and it must be set low before the data are transmitted or received. The SPI_SS can be selected the auto control mode or the software manual control mode. When using auto control, the SS_OWNER (<u>SPI_TCR[6]</u>) must be cleared (default value is 0); when using manual control, the SS_OWNER must be set. And the level of SPI_SS is controlled by SS_LEVEL (<u>SPI_TCR[7]</u>).

In slave mode, after the software selects the MODE bit (<u>SPI_GCR[1]</u>) to '0', it waits for master initiate a transaction. When the master asserts SPI_SS, and SPI_CLK is transmitted to the slave, the slave data is transmitted from TX FIFO on the MISO pin, and the data from the MOSI pin is received in RX FIFO.

9.4.3.6 SPI 3-Wire Mode

The SPI 3-wire mode is only valid when the SPI controller work in master mode, and is selected when the Work Mode Select bit (<u>SPI_BATC[1:0]</u>) is equal to 0x2. And in the 3-wire mode, the input data and the output data use the same single data line. The following figure describes the 3-wire mode.


Figure 9-35 SPI 3-Wire Mode

9.4.3.7 SPI Dual-Input/Dual-Output and Dual I/O Mode

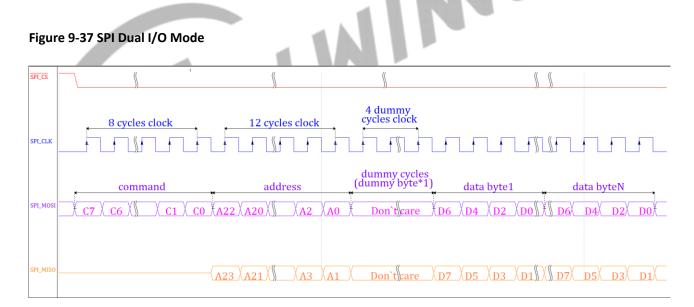
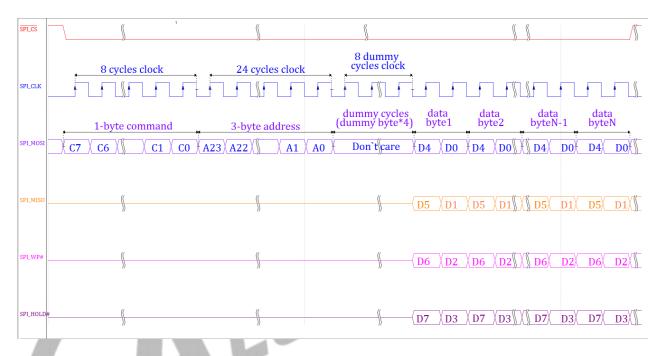

The dual read mode (SPI x2) is selected when the DRM is set in <u>SPI_BCC[28]</u>. Using the dual mode allows data to be transferred to or from the device at double the rate of standard single mode SPI devices, the data can be read at fast speed using two data bits (MOSI and MISO) at a time. The following figure describes the dual-input/dual-output SPI (Figure 9-36) and the dual I/O SPI (Figure 9-37).

Figure 9-36 SPI Dual-Input/Dual-Output Mode

In the dual-input/dual-output SPI mode, the command, address, and the dummy bytes output in a unit of a single bit in serial mode through the SPI_MOSI line, only the data bytes are output (write) and input (read) in a unit of dual bits through the SPI_MOSI and SPI_MISO.


In the dual I/O SPI mode, only the command bytes output in a unit of a single bit in serial mode through the SPI_MOSI line. The address bytes and the dummy bytes output in a unit of dual bits through the SPI_MOSI and SPI_MISO. And the data bytes output (write) and input (read) in a unit of dual bits through the SPI_MOSI and SPI_MISO.

9.4.3.8 SPI Quad-Input/Quad-Output Mode

The quad read mode (SPI x4) is selected when the Quad_EN is set in <u>SPI_BCC[29]</u>. Using the quad mode allows data to be transferred to or from the device at 4 times the rate of standard single mode SPI devices, the data can be read at fast speed using four data bits (MOSI, MISO, IO2 (WP#) and IO3 (HOLD#)) at the same time. The following figure describes the quad-input/quad-output SPI.

Figure 9-38 SPI Quad-Input/Quad-Output Mode

In the quad-input/quad-output SPI mode, the command, address, and the dummy bytes output in a unit of a single bit in serial mode through the SPI_MOSI line. Only the data bytes output (write) and input (read) in a unit of quad bits through the SPI_MOSI, SPI_MISO, SPI_WP#, and SPI_HOLD#.

9.4.3.9 Transmission/Reception Bursts in Master Mode

In SPI master mode, the transmission and reception bursts (byte in unit) are configured before the SPI transfers serial data between the processor and external device. The transmission bursts are written in MWTC (bit[23:0]) of the <u>SPI Master Transmit Counter Register</u>. The transmission bursts in single mode before automatically sending dummy bursts are written in STC (bit[23:0]) of the <u>SPI Master Transmit Counter Register</u>. For dummy data, the SPI controller can automatically send before receiving by writing DBC (bit[27:24]) in the <u>SPI Master Transmit Counter Register</u>. If users do not use the SPI controller to send dummy data automatically, then the dummy bursts are used as the transmission counters to write together in MWTC (bit[23:0]) of the <u>SPI Master Transmit Counter Register</u>. In master mode, the total burst numbers are written in MBC (bit[23:0]) of the <u>SPI Master Transmit Counter Register</u>. When all transmission and reception bursts are transferred, the SPI controller will send a completed interrupt, at the same time, the SPI controller will clear DBC, MWTC, and MBC.

9.4.3.10 SPI Sample Mode and Run Clock Configuration

The SPI controller runs at 3 kHz–100 MHz at its interface to external SPI devices. The internal SPI clock should run at the same frequency as the outgoing clock in the master mode. The SPI clock is selected from different clock sources, the SPI must configure different work mode. There are three work modes: normal sample mode, delay half-cycle sample mode, delay one-cycle sample mode. Delay half-cycle sample mode is the default mode of the SPI controller. When the SPI runs at 40 MHz or below 40 MHz, the SPI can work at normal sample mode or delay half-cycle sample mode. When the SPI runs over 80 MHz, setting the SDC bit in the <u>SPI Transfer Control Register</u> to '1' makes the internal read sample point with a half-cycle delay of SPI_CLK, which is used in high speed read operation to reduce the error caused by the time delay of SPI_CLK between master and slave. Table 9-16 and Table 9-17 show the different configurations of the SPI sample mode.

SPI Sample Mode	SDM(bit13)	SDC(bit11)	Run Clock
normal sample	1	0	<=24 MHz
delay half cycle sample	0	0	<=40 MHz
delay one cycle sample	0	1	>=80 MHz

Table 9-16 SPI Old Sample Mode and Run Clock

The remaining spectrum is not recommended. Because when the output delay of SPI flash (refer to the datasheet of the manufactures for the specific delay time) is the same with the half-cycle time of SPI working clock, the variable edge of the output data for the device bumps into the clock sampling edge of the controller, so setting 1 cycle of sampling delay would cause stability problem.

Table 9-17 SPI New Sample Mode

SPI Sample Mode	SDM (bit13)	SDC (bit11)	SDC1 (bit15)
normal sample	1	0	0
delay half cycle sample	0	0	0
delay one cycle sample	0	1	0
delay 1.5 cycle sample	1	1	0
delay 2 cycle sample	1	0	1
delay 2.5 cycle sample	0	0	1
delay 3 cycle sample	0	1	1

9.4.3.11 DBI 3-Line Interface Writing and Reading Timing

The 3-line DBI Interface I contains CSX, SDA, and SCL, where SDA shares this port for bidirectional port data input and output.

The 3-line DBI Interface II contains CSX, SDA, SCL, and SDI; Data input and output ports are independent of each other.

Since the 3-line display bus mode has no Data/Command data line indicating whether Data or Command is currently being transmitted, an extra bit is added to the data-stream before MSB to indicate whether Data or Command is currently being transmitted. (0: Command, 1: Data)

The following figure shows the writing operation format of 3-line DBI Interface I and Interface II.

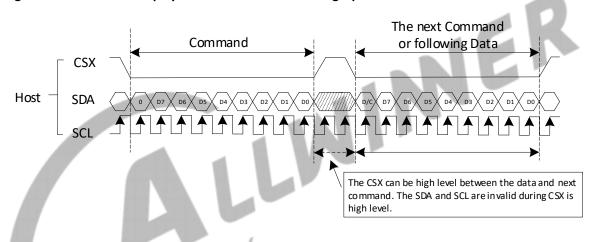
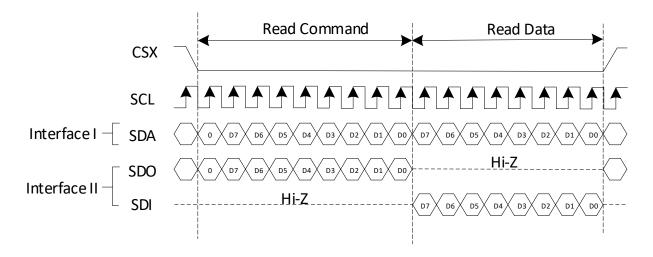



Figure 9-39 DBI 3-Line Display Bus Serial Interface Writing Operation Format

The 3-line DBI Interface I uses the SDA port as bidirectional data input and output port. There are only three cases of data reading volume, 8bits/24bits/32bits, and the first data sampled is high.

The following figure shows the 8 bits reading operation format of 3-line DBI Interface I and Interface II. After the read command is transmitted, the data is read immediately with on dummy period.

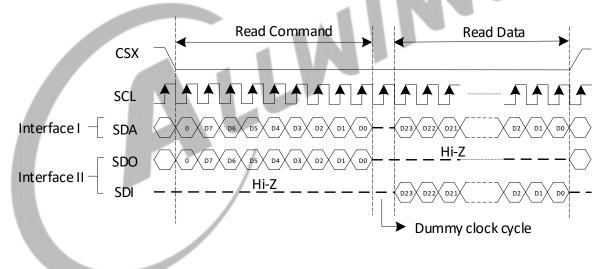


Figure 9-40 DBI 3-Line Display Bus Serial Interface 8-bit Reading Operation Format

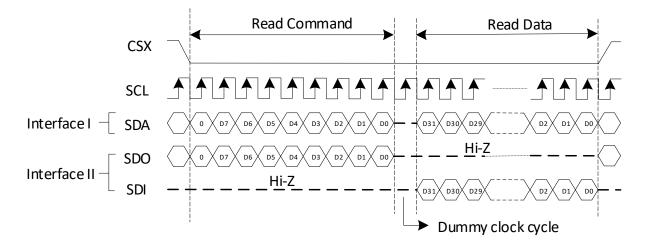
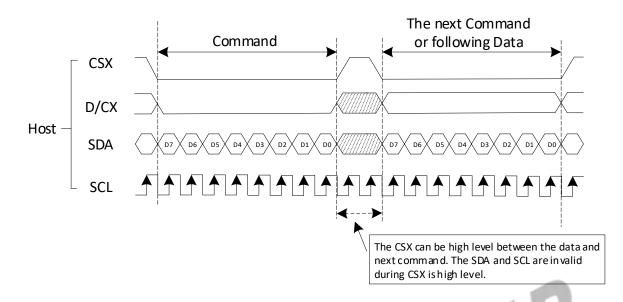

The following figure shows the 24 bits reading operation format of 3-line DBI Interface I and Interface II. After the read command is transmitted, the data is read after waiting for the dummy clock cycle.

Figure 9-41 DBI 3-Line Display Bus Serial Interface 24-bit Reading Operation Format

The following figure shows the 32 bits reading operation format of 3-line DBI Interface I and Interface II. After the read command is transmitted, the data is read after waiting for the dummy clock cycle.

Figure 9-42 DBI 3-Line Display Bus Serial Interface 32-bit Reading Operation Format

9.4.3.12 DBI 4-Line Interface Writing and Reading Timing


The 4-line DBI Interface I contains CSX, D/CX, SDA, and SCL, where SDA shares this port for bidirectional port data input and output.

The 4-line DBI Interface II contains CSX, D/CX, SDA, SCL, and SDI; Data input and output ports are independent of each other.

Since the 4-line display bus mode has a Data/Command data line indicating whether Data or Command is currently being transmitted (0: Command, 1: Data). So there is no need to add an extra bit to data-stream before MSB like the 3-line DBI.

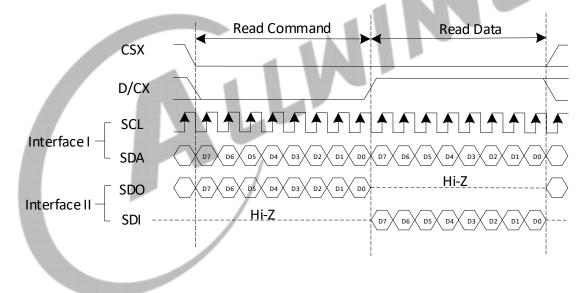

The following figure shows the writing operation format of 4-line DBI Interface I and Interface II.

Figure 9-43 DBI 4-Line Display Bus Serial Interface Writing Operation Format

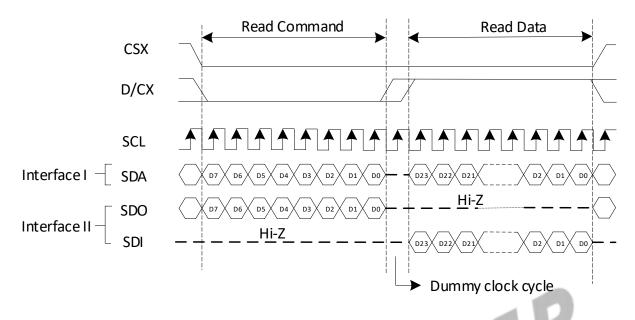

The following figure shows the 8 bits reading operation format of 4-line DBI Interface I and Interface II.

Figure 9-44 DBI 4-Line Display Bus Serial Interface 8-bit Reading Operation Format

The following figure shows the 24 bits reading operation format of 4-line DBI Interface I and Interface II.

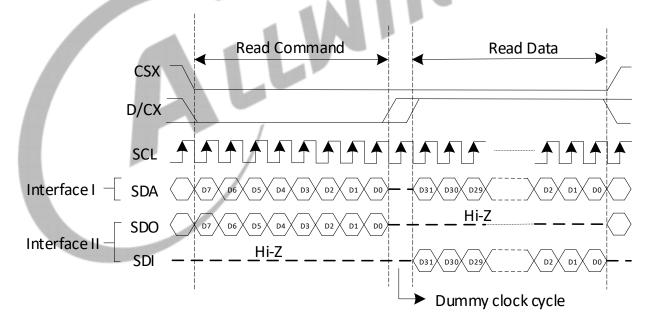
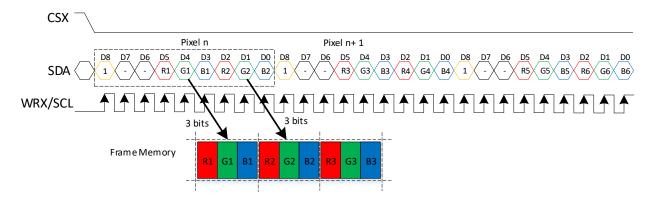
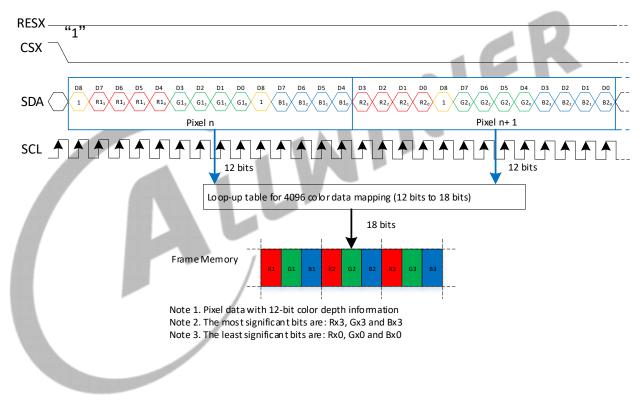


Figure 9-45 DBI 4-Line Display Bus Serial Interface 24-bit Reading Operation Format

The following figure shows the 32 bits reading operation format of 4-line DBI Interface I and Interface II.





9.4.3.13 DBI 3-Line Interface Transmit Video Format

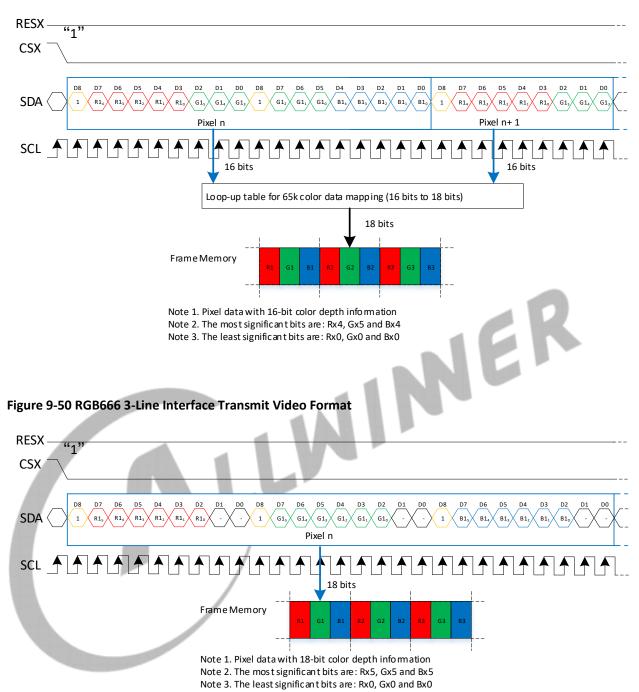

Figure 9-47 RGB111 3-Line Interface Transmit Video Format

Figure 9-48 RGB444 3-Line Interface Transmit Video Format

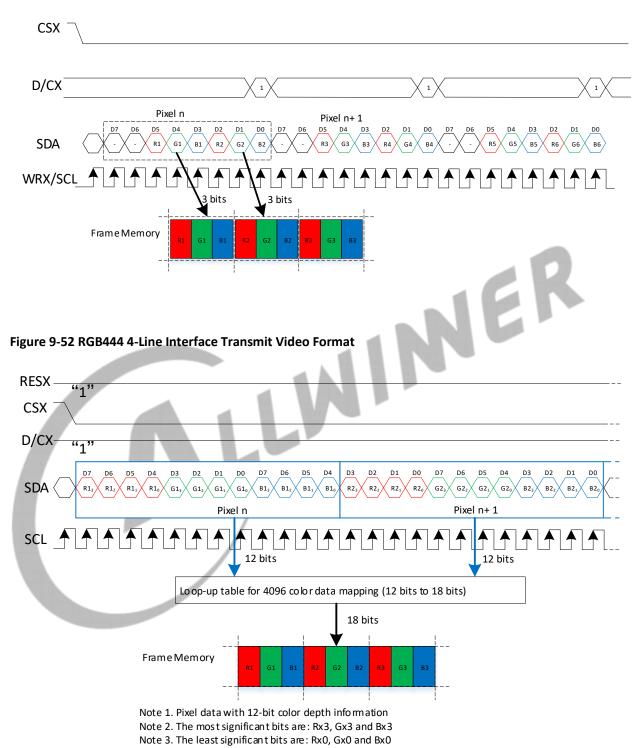
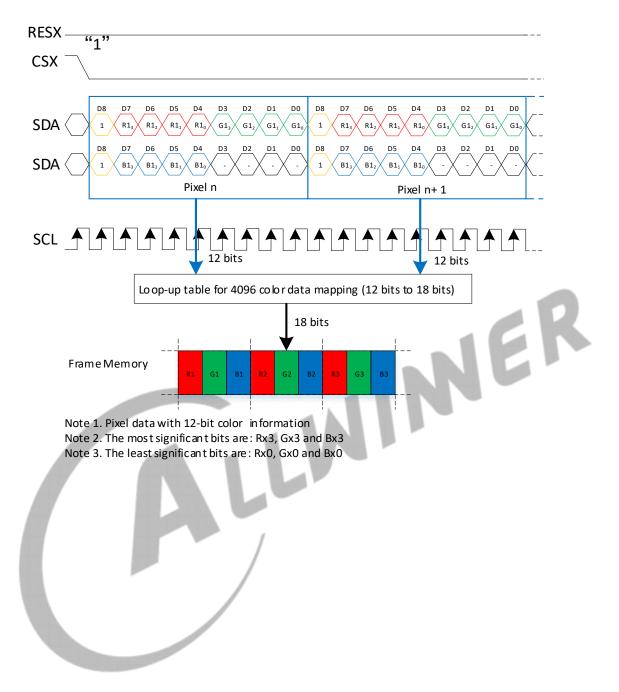


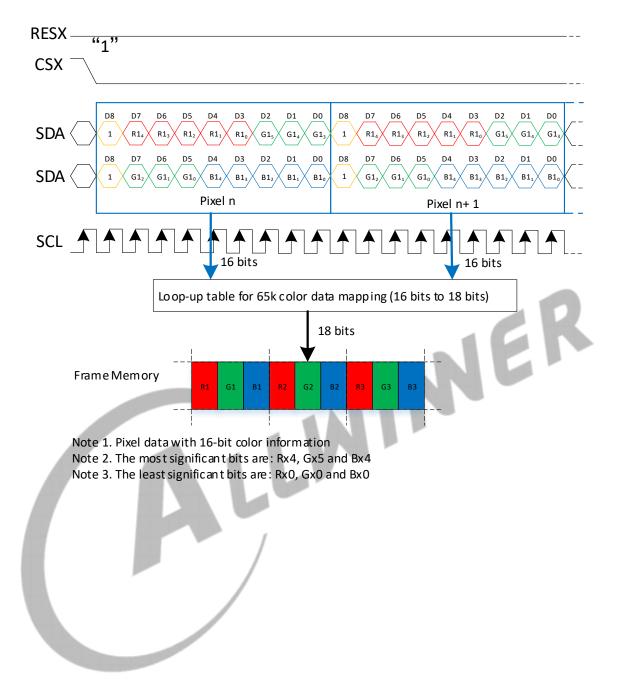
Figure 9-49 RGB565 3-Line Interface Transmit Video Format

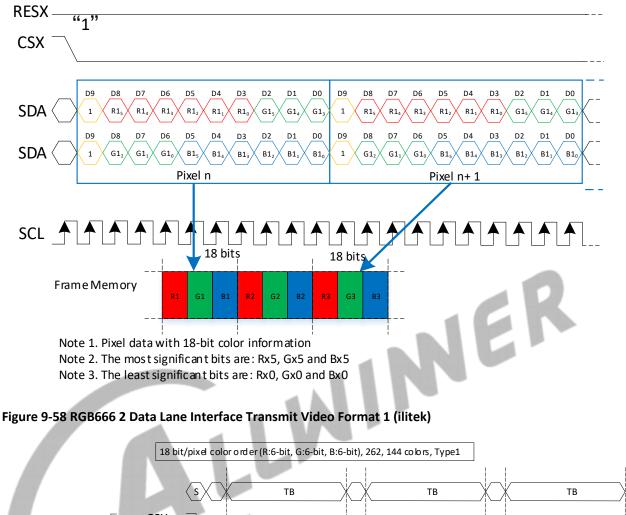
9.4.3.14 DBI 4-Line Interface Transmit Video Format

Figure 9-51 RGB111 4-Line Interface Transmit Video Format



9.4.3.15 DBI 2 Data Lane Interface Transmit Video Format


For RGB444:


Figure 9-55 RGB444 2 Data Lane Interface Transmit Video Format

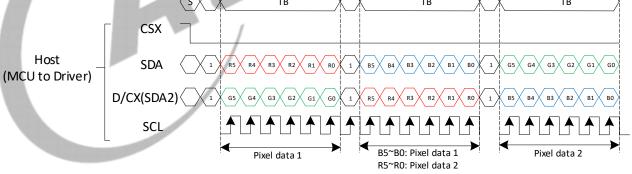


Figure 9-56 RGB565 2 Data Lane Interface Transmit Video Format

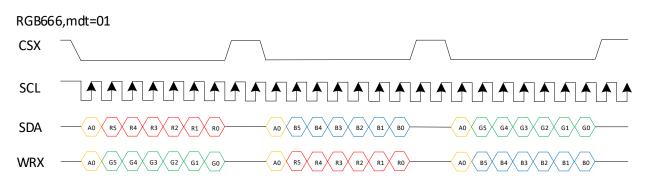


Figure 9-57 RGB666 2 Data Lane Interface Transmit Video Format 0

Figure 9-59 RGB666 2 Data Lane Interface Transmit Video Format 2 (New vision)

NER

Figure 9-60 RGB888 2 Data Lane Interface Transmit Video Format

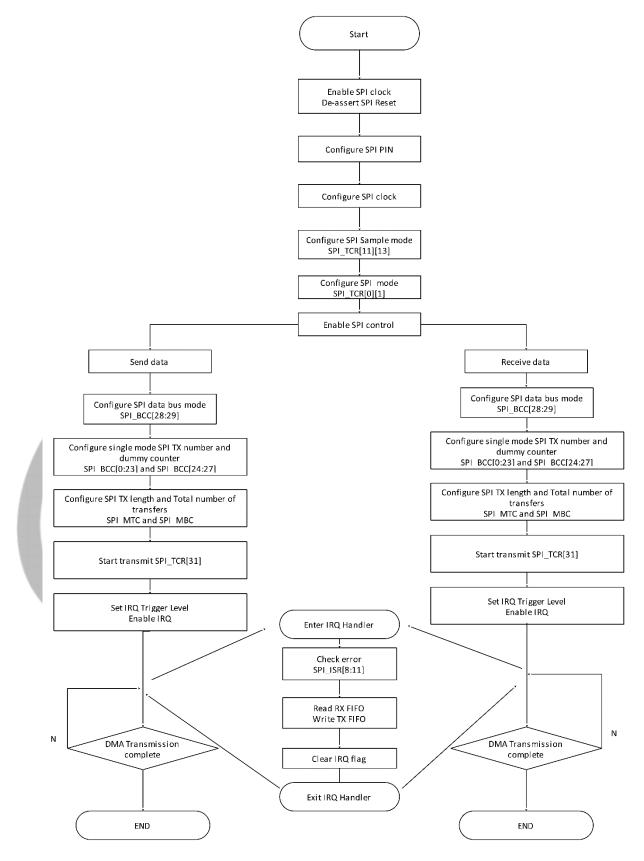
Note 1. Pixel data with 24-bit color information Note 2. The most significant bits are: R7, G7 and B7 Note 3. The least significant bits are: R0, G0 and B0

9.4.4 Programming Guidelines

9.4.4.1 Writing/Reading Data Process Using SPI Mode

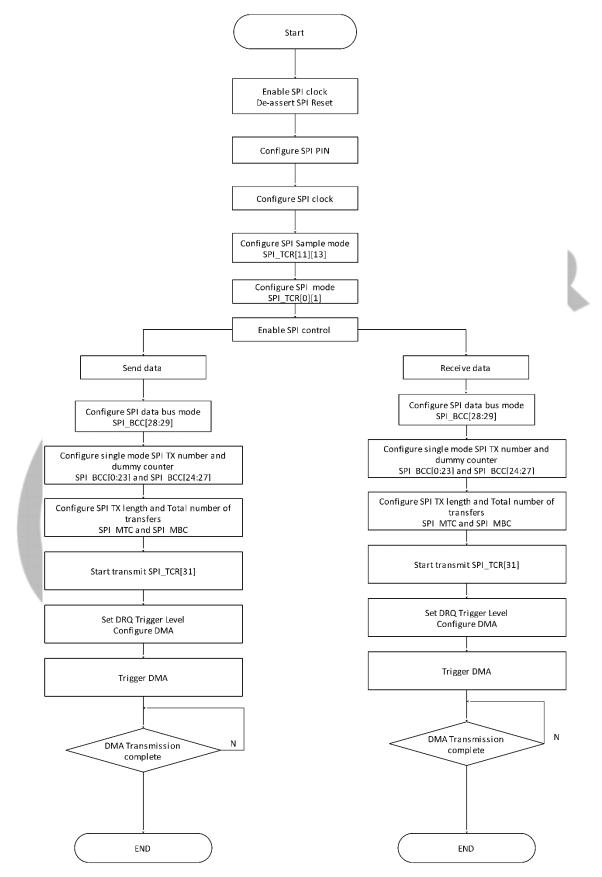
The SPI transfers serial data between the processor and the external device. CPU and DMA are the two main operational modes for SPI. For each SPI, the data is simultaneously transmitted (shifted out serially) and received (shifted in serially). The SPI has 2 channels, including the TX channel and RX channel. The TX channel has the path from TX FIFO to the external device. The RX channel has the path from the external device to RX FIFO.

Write Data: CPU or DMA must write data on the <u>SPI_TXD</u> register, the data on the register are automatically moved to TX FIFO.


Read Data: To read data from RX FIFO, CPU or DMA must access the register <u>SPI_RXD</u> and data are automatically sent to the register <u>SPI_RXD</u>.

In CPU or DMA mode, the SPI sends a completed interrupt (<u>SPI_ISR</u>[TC]) to the processor at the end of each transfer.

CPU Mode


Figure 9-61 SPI Write/Read Data in CPU Mode

DMA Mode

Figure 9-62 SPI Write/Read Data in DMA Mode

9.4.4.2 Calibrate Delay Chain Using SPI Mode

The SPI has one delay chain which is used to generate delay to make proper timing between the internal SPI clock signal and data signals. Delay chain is made up of 64 delay cells. The delay time of one delay cell can be estimated through delay chain calibration.

The steps to calibrate delay chain are as follows:

- **Step 1** Enable SPI. To calibrate the delay chain by operation registers in SPI, the SPI must be enabled through AHB reset and AHB clock gating control registers.
- **Step 2** Configure a proper clock for SPI. The calibration delay chain is based on the clock for SPI from CCU.
- **Step 3** Set proper initial delay value. Write 0xA0 to the <u>SPI Sample Delay Control Register</u> to set initial delay value 0x20 to delay chain. Then write 0x0 to the <u>SPI Sample Delay Control Register</u> to clear this value.
- Step 4 Write 0x8000 to the SPI Sample Delay Control Register to start to calibrate the delay chain.
- Step 5 Wait until the flag (Bit14 in the <u>SPI Sample Delay Control Register</u>) of calibration done is set. The number of delay cells is shown at Bit[13:8] in <u>SPI Sample Delay Control Register</u>. The delay time generated by these delay cells is equal to the cycle of SPI's clock nearly. This value is the result of calibration.
- **Step 6** Calculate the delay time of one delay cell according to the cycle of the SPI clock and the result of calibration.

9.4.4.3 Transmitting Write Command Using DBI Mode

- Step 1 Set the <u>SPI_DBI_MODE_SEL</u> (bit3) of <u>SPI_GCR</u> (0x0004) to 1 to select DBI mode.
- Step 2 Set the <u>DBI EN MODE SEL</u> (bit[30:29]) of <u>DBI_CTL_1</u> (0x0104) to 0 to select the trigger mode of DBI.
- Step 3 Configure the DBI CTL 0 (0x0100).
 - Set **DBI CTL 0**[Command Type] (bit31) to 0 to configure the writing command.
 - Set <u>DBI_CTL_0</u>[Write Command Dummy Cycles] (bit[30:20]) to configure the number of dummy cycles between commands.
 - Set **DBI_CTL_0**[Output Data Sequence] (bit19) to select the MSB or LSB.
 - Set **DBI_CTL_0**[Transmit Mode] (bit15) to 0 to select the command path.
 - Set <u>DBI_CTL_0</u>[Output Data Format] (bit[14:12]) to 0 to transmit the command.
 - Set <u>DBI_CTL_0[DBI interface Select]</u> (bit[10:8]) to select the DBI interface type.
 - > The remaining values of the DBI_CTL_0 register remain the default value.

Step 4 Set <u>DBI_CTL_1[DCX_DATA]</u> (bit22) to 0 to send the command.

- **Step 5** DMA Path: Configure the <u>SPI_FCR</u> register (0x0018).
 - Set <u>SPI_FCR[TF_DRQ_EN]</u> (bit24) to 1 to enable TXFIFO DMA.
 - Set <u>SPI_FCR[TX_TRIG_LEVEL]</u> (bit[23:16]) to 255. It indicates the controller requests data from DMA if the remaining space of TX FIFO is greater than 255.

CPU Path: Write the command to be sent to the 0x200 address.

- **Step 6** Set <u>SPI_GCR[DBI_EN]</u> (bit4) to 1 to start transmitting the command.
- **Step 7** Wait until the TX FIFO underrun interrupt (<u>SPI_ISR[TF_UDF]</u>) is 1. It indicates that the command written to the TX FIFO is transmitted completely.

9.4.4.4 Transmitting Parameter Using DBI Mode

- Step 1 Set the SPI_DBI_MODE_SEL (bit3) of SPI_GCR (0x0004) to 1 to select DBI mode.
- Step 2 Set the DBI EN MODE SEL (bit[30:29]) of DBI CTL 1 (0x0104) to 0 to select the trigger mode of DBI.
- **Step 3** Configure the **DBI_CTL_0** register (0x0100).
 - Set **DBI_CTL_0**[Command Type] (bit31) to 0 to configure the writing command.
 - Set <u>DBI_CTL_0[</u>Write Command Dummy Cycles] (bit[30:20]) to configure the number of dummy cycles between commands.
 - Set **DBI CTL 0**[Output Data Sequence] (bit19) to select the MSB or LSB.
 - Set **DBI CTL 0**[Transmit Mode] (bit15) to 0 to select the command path.
 - Set **DBI_CTL_0**[Output Data Format] (bit[14:12]) to 0 to transmit the command.
 - Set **DBI_CTL_0**[DBI interface Select] (bit[10:8]) to select the DBI interface type.
 - > The remaining values of the DBI_CTL_0 register remain the default value.
- **Step 4** Set <u>DBI_CTL_1</u>[DCX_DATA] (bit22) to 1 to send the parameter.
- **Step 5** DMA Path: Configure the register (0x0018).
 - Set <u>SPI_FCR[TF_DRQ_EN]</u> (bit24) to 1 to enable TXFIFO DMA.
 - Set <u>SPI_FCR[TX_TRIG_LEVEL]</u> (bit[23:16]) to 255. It indicates the controller requests data from DMA if the remaining space of TX FIFO is greater than 255.

CPU Path: Write the command to be sent to the 0x0200 address.

Step 6 Set <u>SPI_GCR</u>[DBI_EN] (bit4) to 1 to start transmitting the command.

Step 7 Wait until the TX FIFO underrun interrupt (<u>SPI_ISR[TF_UDF]</u>) is 1. It indicates that the command written to the TX FIFO is transmitted completely.

9.4.4.5 Transmitting Video Using DBI Mode

Set the <u>SPI_DBI_MODE_SEL</u> (bit3) of <u>SPI_GCR</u> (0x0004) to 1 to select DBI mode.

If the data is from the CPU path, the controller writes the command to be sent to the 0x0200 address by the AHB bus.

If the data is from the DMA path, configure <u>DBI_CTL_1[DBI_FIFO_DRQ_EN]</u> (bit15) to 1 and <u>DBI_CTL_1[TX_TRIG_LEVEL]</u> (bit[14:8]) to 64, which indicates the controller requests data from DMA if the remaining space of TX FIFO is greater than 64.

Software Trigger Mode

The software enables DBI_en_trigger when the edge interrupt of TE is detected.

After transmitting each frame image, the controller clears automatically the line_cnt, pixel_cnt and stops transmitting data.

Wait for the edge interrupt of TE, the software needs to enable DBI_en_trigger, in circulation.

The operation process is as follows.

- Step 1 Set the <u>SPI_DBI_MODE_SEL</u> (bit3) of <u>SPI_GCR</u> (0x0004) to 1 to select DBI mode.
- Step 2 Set the <u>DBI EN MODE SEL</u> (bit[30:29]) of <u>DBI_CTL_1</u> (0x0104) to 1 to select the software trigger mode.
- **Step 3** Configure the **DBI_CTL_0** register (0x0100).
 - Set **DBI_CTL_0**[Command Type] (bit31) to 0 to set the writing command.
 - Set <u>DBI_CTL_0</u>[Write Command Dummy Cycles] (bit[30:20]) to configure the number of dummy cycles between commands.
 - Set **DBI_CTL_0**[Output Data Sequence] (bit19) to select the MSB or LSB.
 - Set <u>DBI_CTL_0</u>[Transmit Mode] (bit15) to 1 to select the image path.
 - Set DBI CTL 0[Output Data Format] (bit[14:12]) to select RGB111//444/565/666/888.
 - Set <u>DBI_CTL_0</u>[DBI interface Select] (bit[10:8]) to select the DBI interface type.
 - The remaining values of the **<u>DBI</u>CTL 0** register remain the default value.
- **Step 4** Set <u>DBI_CTL_1</u>[DCX_DATA] (bit22) to 0 to send the image data.
- **Step 5** Configure <u>DBI_Video_Size</u> (0x110) according to the sent image size.

- **Step 6** Configure <u>DBI_CTL_2</u> (0x0108) to set the TE-related parameter.
- **Step 7** Detect the TE interrupt of the **DBI INT** (0x0120) register.
- **Step 8** Configure <u>DBI_CTL_1</u>[DBI_soft_trigger] to 1.

Timer Trigger Mode

The software configures timer_en to enable timer counting, and when the counter reaches the specified value, the DBI_EN automatically can be enabled to start transmitting data.

After transmitting each frame image, the controller clears automatically the line_cnt, pixel_cnt, and stops transmitting data.

The timer starts counting again. When the counter reaches the specified value, the controller automatically enables DBI_EN, and in circulation until the software turns off the timer_en.

The operation process is as follows.

- Step 1 Set the <u>SPI_DBI_MODE_SEL</u> (bit3) of <u>SPI_GCR</u> (0x0004) to 1 to select DBI mode.
- Step 2 Set the <u>DBI EN MODE SEL</u> (bit30:29) of <u>DBI_CTL_1</u> (0x0104) to 2 to select the timer trigger mode.

Step 3 Configure the **DBI_CTL_0** register (0x0100).

- Set **DBI_CTL_0**[Command Type] (bit31) to 0 to set the writing command.
- Set <u>DBI_CTL_0[</u>Write Command Dummy Cycles] (bit[30:20]) to configure the number of dummy cycles between commands.
- Set **DBI CTL 0**[Output Data Sequence] (bit19) to select the MSB or LSB.
- Set **DBI_CTL_0**[Transmit Mode] (bit15) to 1 to select the image path.
- Set DBI CTL 0[Output Data Format] (bit[14:12]) to select RGB111/444/565/666/888.
- Set **DBI_CTL_0**[DBI interface Select] (bit[10:8]) to select the DBI interface type.

The remaining values of the **DBI_CTL_0** register remain the default value.

- **Step 4** Set <u>DBI_CTL_1</u>[DCX_DATA] (bit22) to 0 to send the image data.
- **Step 5** Configure <u>DBI_Video_Size</u> (0x110) to transmit the image size.
- **Step 6** Configure the related parameter of **DBI_Timer** (0x10C).

TE Trigger Mode

When the edge changes of the TE are detected (The rising and falling edges are optional), the DBI_EN automatically can be enabled to start transmitting data.

After transmitting each frame image, the controller clears automatically the line_cnt, pixel_cnt, and stops transmitting data.

When the edge changes of the TE are detected (The rising and falling edges are optional), the DBI_EN automatically can be enabled to start transmitting data until the software shuts down TE_EN or the screen no longer sends TE signals.

The operation process is as follows.

- Step 1 Set the <u>SPI_DBI_MODE_SEL</u> (bit3) of <u>SPI_GCR</u> (0x0004) to 1 to select DBI mode.
- Step 2 Set the <u>DBI EN MODE SEL</u> (bit30:29) of <u>DBI_CTL_1</u> (0x0104) to 3 to select the TE trigger mode.
- **Step 3** Configure the **DBI_CTL_0** register (0x0100).
 - Set <u>DBI_CTL_0</u>[Command Type] (bit31) to 0 to set the writing command.
 - Set <u>DBI_CTL_0[</u>Write Command Dummy Cycles] (bit[30:20]) to configure the number of dummy cycles between commands.
 - Set <u>DBI_CTL_0</u>[Output Data Sequence] (bit19) to select the MSB or LSB.
 - Set DBI CTL 0[Transmit Mode] (bit15) to 1 to select the image path.
 - Set <u>DBI_CTL_0</u>[Output Data Format] (bit[14:12]) to select RGB111/444/565/666/888.
 - Set DBI CTL 0[DBI interface Select] (bit[10:8]) to select the DBI interface type.
 - The remaining values of the **<u>DBI_CTL_0</u>** register remain the default value.
- **Step 4** Configure **DBI_CTL_1**[DCX_DATA] (bit22) to 0 to send the image data.
- **Step 5** Configure **DBI Video Size** (0x0110) to transmit the image size.
- **Step 6** Configure <u>DBI_CTL_2</u> (0x0108) to set the TE-related parameter.

9.4.4.6 Transmitting Read Command and Read Data Using DBI Mode

- Step 1 Set the <u>SPI_DBI_MODE_SEL</u> (bit3) of <u>SPI_GCR</u> (0x0004) to 1 to select DBI mode.
- **Step 2** Set the <u>DBI EN MODE SEL</u> (bit[30:29]) of <u>DBI_CTL_1</u> (0x0104) to 0.
- **Step 3** Configure the <u>DBI_CTL_0</u> register (0x0100).
 - Set **DBI_CTL_0**[Command Type] (bit31) to 0 to set the reading command.
 - Set **DBI_CTL_0**[Output Data Sequence] (bit19) to select the MSB or LSB.
 - Set **DBI_CTL_0**[Transmit Mode] (bit15) to 0 to select the command path.
 - Set <u>DBI_CTL_0[</u>Output Data Format] (bit[14:12]) to 0.
 - Set **DBI_CTL_0**[DBI interface Select] (bit[10:8]) to select the DBI interface type.

- The remaining values of the **<u>DBI_CTL_0</u>** register remain the default value.
- **Step 4** Configure the <u>DBI_CTL_1</u> register (0x0104).
 - Configure **DBI_CTL_1**[DCX_DATA] (bit22) to 0 to send the command.
 - Configure <u>DBI_CTL_1[Read_MSB_First]</u> (bit20) to select whether the first bit of the read data is the highest or lowest bit of data.
 - Configure **DBI CTL 1**[Read Data Number of Bytes] to set the byte number to be read.
 - Configure <u>DBI_CTL_1</u>[Read Command Dummy Cycles] to set the dummy cycle between the read command and the read data, when the dummy cycle is complete, the data starts to be sampled.
- **Step 5** DMA Path: Configure the <u>SPI_FCR</u> register (0x0018).
 - Set <u>SPI_FCR[RF_DRQ_EN]</u> (bit8) to 1 to enable RXFIFO DMA.
 - Set <u>SPI_FCR[RX_TRIG_LEVEL]</u> (bit[7:0]) to 32, which indicates the controller requests receiving data from DMA if the data of the RX FIFO is greater than 64.

CPU Path: Read data in RX FIFO from the 0x0300 address.

- **Step 6** Set <u>SPI_GCR[DBI_EN]</u> (bit4) to 1 to start transmitting command.
- **Step 7** Wait until **DBI_INT**[RD_DONE_INT] is 1. It indicates that the data is read completely.

9.4.5 Register List

Module Name	Base Address
SPI_DBI	0x04026000

Register Name	Offset	Description
SPI_GCR	0x0004	SPI Global Control Register
SPI_TCR	0x0008	SPI Transfer Control Register
SPI_IER	0x0010	SPI Interrupt Control Register
SPI_ISR	0x0014	SPI Interrupt Status Register
SPI_FCR	0x0018	SPI FIFO Control Register
SPI_FSR	0x001C	SPI FIFO Status Register
SPI_WCR	0x0020	SPI Wait Clock Register
SPI_SAMP_DL	0x0028	SPI Sample Delay Control Register
SPI_MBC	0x0030	SPI Master Burst Counter Register
SPI_MTC	0x0034	SPI Master Transmit Counter Register

Register Name	Offset	Description			
SPI_BCC	0x0038	SPI Master Burst Control Register			
SPI_BATCR	0x0040	SPI Bit-Aligned Transfer Configure Register			
SPI_BA_CCR	0x0044	SPI Bit-Aligned Clock Configuration Register			
SPI_TBR	0x0048	SPI TX Bit Register			
SPI_RBR	0x004C	SPI RX Bit Register			
SPI_NDMA_MODE_CTL	0x0088	SPI Normal DMA Mode Control Register			
DBI_CTL_0	0x0100	DBI Control Register 0			
DBI_CTL_1	0x0104	DBI Control Register 1			
DBI_CTL_2	0x0108	DBI Control Register 2			
DBI_TIMER	0x010C	DBI Timer Control Register			
DBI_VIDEO_SZIE	0x0110	DBI Video Size Configuration Register			
DBI_INT	0x0120	DBI Interrupt Register			
DBI_DEBUG_0	0x0124	DBI BEBUG 0 Register			
DBI_DEBUG_1	0x0128	DBI BEBUG 1 Register			
SPI_TXD	0x0200	SPI TX Data register			
SPI_RXD	0x0300	SPI RX Data register			
egister Description					

Register Description 9.4.6

9.4.6.1 0x0004 SPI Global Control Register (Default Value: 0x0000_0080)

Offset	Offset:0x0004		Register Name: SPI_GCR
Bit	Read/Write	Default/Hex	Description
			SRST
			Soft reset
31	R/WAC	0x0	Writing '1' to this bit will clear the SPI controller, and auto clear to
			'0' when reset operation completes.
			Writing '0' to this bit has no effect.
30:8	/	/	/

Offset	Offset:0x0004		Register Name: SPI_GCR
Bit	Read/Write	Default/Hex	Description
7	R/W	0x1	TP_EN Transmit Pause Enable In master mode, it is used to control transmit state machine to stop smart burst sending when RX FIFO is full. 0: Normal operation, ignore RXFIFO status 1: Stop transmit data when RXFIFO full Cannot be written when XCH=1.
6:5	/	/	/
4	R/W	0x0	DBI EN DBI Module Enable Control 0: Disable 1: Enable
3	R/W	0x0	SPI_DBI_MODE_SEL DBI Working Mode Select 0: SPI MODE 1: DBI MODE
2	R/W	0x0	MODE_SELEC Sample Timing Mode Select 0: Old mode of Sample Timing 1: New mode of Sample Timing Cannot be written when XCH=1.
1	R/W	0x0	MODE SPI Function Mode Select 0: Slave mode 1: Master mode Cannot be written when XCH=1.
0	R/W	0x0	EN SPI Module Enable Control 0: Disable 1: Enable After transforming from bit_mode to byte_mode, it must enable the SPI module again.

9.4.6.2 0x0008 SPI Transfer Control Register (Default Value: 0x0000_0087)

Offset:	Offset: 0x0008		Register Name: SPI_TCR
Bit	Read/Write	Default/Hex	Description
31	R/WAC	0x0	XCH Exchange Burst In master mode, it is used to start SPI burst O: Idle 1: Initiates exchange. Writing "1" to this bit will start the SPI burst, and will auto-clear after finishing the bursts transfer specified by BC. Writing "1" to SRST will also clear this bit. Writing 'O' to this bit has no effect. Cannot be written when XCH=1.
30:16	/	/	/
15	R/W R/W	0x0 0x0	SDC1 Master Sample Data Control register1 Set this bit to '1' to make the internal read sample point with a delay of half-cycle of SPI_CLK. It is used in high speed read operation to reduce the error caused by the time delay of SPI_CLK between master and slave. 0: Normal operation, do not delay the internal read sample point 1: Delay the internal read sample point Cannot be written when XCH=1. SDDM Sending Data Delay Mode 0: Normal sending 1: Delay sending 1: Delay sending Set the bit to "1" to make the data that should be sent with a delay of half-cycle of SPI_CLK in dual IO mode for SPI mode 0.
13	R/W	0x0	Cannot be written when XCH=1. SDM Master Sample Data Mode 0: Delay sample mode 1: Normal sample mode In normal sample mode, the SPI master samples the data at the correct edge for each SPI mode; In delay sample mode, the SPI master samples data at the edge that is half cycle delayed by the correct edge defined in respective SPI mode. Cannot be written when XCH=1.

Offset	Offset: 0x0008		Register Name: SPI_TCR
Bit	Read/Write	Default/Hex	Description
12	R/W	0x0	 FBS First Transmit Bit Select 0: MSB first. The upper bits are transmitted first. 1: LSB first. The lower bits are transmitted first.
			Cannot be written when XCH=1.
11	R/W	0x0	SDC Master Sample Data Control Set this bit to '1' to make the internal read sample point with a delay of half-cycle of SPI_CLK. It is used in high speed read operation to reduce the error caused by the time delay of SPI_CLK between master and slave. 0: Normal operation, do not delay the internal read sample point 1: Delay the internal read sample point
			Cannot be written when XCH=1.
10	R/W	0x0	RPSM Rapids Mode Select Select rapid mode for high speed write. 0: Normal write mode 1: Rapid write mode Cannot be written when XCH=1.
9	R/W	0x0	DDB Dummy Burst Type 0: The bit value of dummy SPI burst is zero 1: The bit value of dummy SPI burst is one Cannot be written when XCH=1.
8	R/W	0x0	DHB Discard Hash Burst In master mode, it controls whether discarding unused SPI bursts O: Receiving all SPI bursts in the BC period 1: Discard unused SPI bursts, only fetching the SPI bursts during the dummy burst period. The burst number is specified by TC.
			Cannot be written when XCH=1.

Offset:	Offset: 0x0008		Register Name: SPI_TCR
Bit	Read/Write	Default/Hex	Description
7	R/W	0x1	SS_LEVEL SPI Chip Select Level When control SS signal manually (SS_OWNER (SPI_TCR[6])==1), set this bit to '1' or '0' to control the level of SS signal. 0: Set SS to low 1: Set SS to high Cannot be written when XCH=1.
6	R/W	0x0	SS_OWNER SS Output Owner Select Usually, the controller sends the SS signal automatically with data together. When this bit is set to 1, the software must manually write SS_LEVEL (SPI_TCR[7]) to 1 or 0 to control the level of the SS signal. 0: SPI controller 1: Software Cannot be written when XCH=1.
5:4	R/W	0x0	SS_SEL SPI Chip Select Select one of four external SPI Master/Slave Devices 00: SPI_SS0 will be asserted 01: SPI_SS1 will be asserted 10: SPI_SS2 will be asserted 11: SPI_SS3 will be asserted Cannot be written when XCH=1.
3	R/W	0x0	SSCTL In master mode, this bit selects the output waveform for the SPI_SSx signal. Only valid when SS_OWNER (SPI_TCR[6])= 0. 0: SPI_SSx remains asserted between SPI bursts 1: Negate SPI_SSx between SPI bursts Cannot be written when XCH=1.
2	R/W	0x1	 SPOL SPI Chip Select Signal Polarity Control O: Active high polarity (0 = Idle) 1: Active low polarity (1 = Idle) Cannot be written when XCH=1.

Offset	Offset: 0x0008		Register Name: SPI_TCR
Bit	Read/Write	Default/Hex	Description
			CPOL
			SPI Clock Polarity Control
1	R/W	0x1	0: Active high polarity (0 = Idle)
			1: Active low polarity (1 = Idle)
			Cannot be written when XCH=1.
			СРНА
	R/W 0x1	0x1	SPI Clock/Data Phase Control
0			0: Phase 0 (Leading edge for sample data)
			1: Phase 1 (Leading edge for setup data)
			Cannot be written when XCH=1.

9.4.6.3 0x0010 SPI Interrupt Control Register (Default Value: 0x0000_0000)

Offset:	Offset: 0x0010		Register Name: SPI_IER
Bit	Read/Write	Default/Hex	Description
31:14	1	1	
13	R/W	0x0	SS_INT_EN SSI Interrupt Enable Chip select signal (SSx) from the valid state to the invalid state 0: Disable 1: Enable
12	R/W	0x0	TC_INT_EN Transfer Completed Interrupt Enable 0: Disable 1: Enable
11	R/W	0x0	TF_UDR_INT_EN TXFIFO Underrun Interrupt Enable 0: Disable 1: Enable
10	R/W	0x0	TF_OVF_INT_EN TX FIFO Overflow Interrupt Enable 0: Disable 1: Enable

Offset	Offset: 0x0010		Register Name: SPI_IER
Bit	Read/Write	Default/Hex	Description
9	R/W	0x0	RF_UDR_INT_EN RXFIFO Underrun Interrupt Enable 0: Disable 1: Enable
8	R/W	0x0	RF_OVF_INT_EN RX FIFO Overflow Interrupt Enable 0: Disable 1: Enable
7	/	/	/
6	R/W	0x0	TF_FUL_INT_EN TX FIFO Full Interrupt Enable 0: Disable 1: Enable
5	R/W	0x0	TX_EMP_INT_EN TX FIFO Empty Interrupt Enable 0: Disable 1: Enable
4	R/W	0x0	TX_ERQ_INT_EN TX FIFO Empty Request Interrupt Enable 0: Disable 1: Enable
3	1	1	1
2	R/W	0x0	RF_FUL_INT_EN RX FIFO Full Interrupt Enable 0: Disable 1: Enable
1	R/W	0x0	RX_EMP_INT_EN RX FIFO Empty Interrupt Enable 0: Disable 1: Enable
0	R/W	0x0	RF_RDY_INT_EN RX FIFO Ready Request Interrupt Enable 0: Disable 1: Enable

9.4.6.4 0x0014 SPI Interrupt Status Register (Default Value: 0x0000_0032)

Offset:	Offset: 0x0014		Register Name: SPI_ISR
Bit	Read/Write	Default/Hex	Description
31:14	/	/	/
13	R/W1C	0x0	SSI SS Invalid Interrupt When SSI is 1, it indicates that SS has changed from the valid state to the invalid state. Writing 1 to this bit clears it.
12	R/W1C	0x0	TC Transfer Completed In master mode, it indicates that all bursts specified by BC have been exchanged. In other conditions, when set, this bit indicates that all the data in TXFIFO has been loaded in the Shift register, and the Shift register has shifted out all the bits. Writing 1 to this bit clears it. 0: Busy 1: Transfer completed
11	R/W1C	0x0	TF_UDF TXFIFO Underrun This bit is set when the TXFIFO is underrun. Writing 1 to this bit clears it. 0: TXFIFO is not underrun 1: TXFIFO is underrun
10	R/W1C	0x0	TF_OVF TXFIFO Overflow This bit is set when the TXFIFO is overflowed. Writing 1 to this bit clears it. 0: TXFIFO is not overflowed 1: TXFIFO is overflowed
9	R/W1C	0x0	RX_UDF RXFIFO Underrun When set, this bit indicates that RXFIFO is underrun. Writing 1 to this bit clears it. 0: RXFIFO is not underrun 1: RXFIFO is underrun

Offset:	0x0014		Register Name: SPI_ISR
Bit	Read/Write	Default/Hex	Description
			RX_OVF
			RXFIFO Overflow
8	R/W1C	0x0	When set, this bit indicates that RXFIFO is overflowed. Writing 1 to
0		0.0	this bit clears it.
			0: RXFIFO is not overflowed
			1: RXFIFO is overflowed
7	/	/	/
			TX_FULL
			TXFIFO Full
6	R/W1C	0x0	This bit is set when the TXFIFO is full. Writing 1 to this bit clears it.
			0: TXFIFO is not Full
			1: TXFIFO is Full
			TX_EMP
			TXFIFO Empty
5	R/W1C	0x1	This bit is set when the TXFIFO is empty. Writing 1 to this bit clears
5	N/ WIC	UXI	it.
			0: TXFIFO contains one or more words.
			1: TXFIFO is empty
			TX_READY
			TXFIFO Ready
			0: TX_WL > TX_TRIG_LEVEL
4	R/W1C	0x1	1: TX_WL <= TX_TRIG_LEVEL
			This bit will be immediately set to 1 if TX_WL <= TX_TRIG_LEVEL.
			Writing "1" to this bit clears it. The TX_WL is the water level of
			TXFIFO.
3	/	1	
			RX_FULL
			RXFIFO Full
2	R/W1C	0x0	This bit is set when the RXFIFO is full. Writing 1 to this bit clears it.
			0: Not Full
			1: Full
			RX_EMP
			RXFIFO Empty
1	R/W1C	0x1	This bit is set when the RXFIFO is empty. Writing 1 to this bit clears
			it.
			0: Not empty
			1: empty

Offset	Offset: 0x0014		Register Name: SPI_ISR
Bit	Read/Write	Default/Hex	Description
			RX_RDY
			RXFIFO Ready
			0: RX_WL < RX_TRIG_LEVEL
0	R/W1C	0x0	1: RX_WL >= RX_TRIG_LEVEL
			This bit will be immediately set to 1 if RX_WL >= RX_TRIG_LEVEL.
			Writing "1" to this bit clears it. The RX_WL is the water level of
			RXFIFO.

9.4.6.5 0x0018 SPI FIFO Control Register (Default Value: 0x0040_0001)

Offset:	0x0018		Register Name: SPI_FCR
Bit	Read/Write	Default/Hex	Description
			TX_FIFO_RST
			TX FIFO Reset
31	R/WAC	0x0	Writing '1' to this bit will reset the control portion of the TXFIFO
			and auto clear to '0' when completing the reset operation, writing
			'0' to this bit has no effect.
			TF_TEST_ENB
			TX Test Mode Enable
		0x0	0: Disable
	R/W		1: Enable
30			In normal mode, the TXFIFO can only be read by the SPI controller,
			writing '1' to this bit will switch the read and write function of
			TXFIFO to AHB bus. This bit is used to test the TXFIFO, do not set in
			normal operation, and do not set RF_TEST and TF_TEST at the
			same time.
29:25	1	/	/
			TF_DRQ_EN
24		0.40	TX FIFO DMA Request Enable
24	R/W	0x0	0: Disable
			1: Enable
23:16	5.444	0.40	TX_TRIG_LEVEL
23.10	R/W	0x40	TX FIFO Empty Request Trigger Level

Offset	Offset: 0x0018		Register Name: SPI_FCR
Bit	Read/Write	Default/Hex	Description
			RF_RST RXFIFO Reset
15	R/WAC	0x0	Writing '1' to this bit will reset the control portion of the receiver FIFO, and auto clear to '0' when completing the reset operation, writing '0' to this bit has no effect.
14	R/W	0x0	RF_TEST RX Test Mode Enable 0: Disable 1: Enable In normal mode, the RXFIFO can only be written by the SPI controller, writing '1' to this bit will switch the read and write function of RXFIFO to AHB bus. This bit is used to test the RXFIFO, do not set in normal operation, and do not set RF_TEST and TF_TEST at the same time.
13:9	/	/	
8	R/W	0x0	RF_DRQ_EN RXFIFO DMA Request Enable 0: Disable 1: Enable
7:0	R/W	0x1	RX_TRIG_LEVEL RXFIFO Ready Request Trigger Level

9.4.6.6 0x001C SPI FIFO Status Register (Default Value: 0x0000_0000)

Offset:	0x001C		Register Name: SPI_FSR
Bit	Read/Write	Default/Hex	Description
31	D	0x0	TB_WR
31	R		TXFIFO Write Buffer Write Enable
			TB_CNT
30:28	R	0x0	TXFIFO Write Buffer Counter
			These bits indicate the number of words in TXFIFO Write Buffer
27:24	/	/	/

Offset: 0x001C			Register Name: SPI_FSR
Bit	Read/Write	Default/Hex	Description
			TF_CNT
			TXFIFO Counter
			These bits indicate the number of words in TXFIFO
23:16	R	0x0	0: 0 byte in TXFIFO
23.10	n	0.00	1: 1 byte in TXFIFO
			64: 64 bytes in TXFIFO
			other: Reserved
15	R	0x0	RB_WR
15	n	UXU	RXFIFO Read Buffer Write Enable
			RB_CNT
14:12	R	0x0	RXFIFO Read Buffer Counter
			These bits indicate the number of words in RXFIFO Read Buffer
11:8	/	/	
			RF_CNT
			RXFIFO Counter
			These bits indicate the number of words in RXFIFO
7:0	R	0x0	0: 0 byte in RXFIFO
7.0	n –	0.0	1: 1 byte in RXFIFO
			64: 64 bytes in RXFIFO
			other: Reserved

9.4.6.7 0x0020 SPI Wait Clock Register (Default Value: 0x0000_0000)

Offset:	Offset: 0x0020		Register Name: SPI_WCR
Bit	Read/Write Default/Hex		Description
31:20	1	/	/

Offset	0x0020		Register Name: SPI_WCR
Bit	Read/Write	Default/Hex	Description
19:16	R/W	0x0	 SWC Dual mode direction switch wait clock counter (for master mode only). These bits control the number of wait states to be inserted before starting dual data transfer in dual SPI mode. The SPI module counts SPI_SCLK by SWC for delaying the next word data transfer. 0: No wait states inserted n: n SPI_SCLK wait states inserted Cannot be written when XCH=1.
15:0	R/W	0x0	 WCC Wait Clock Counter (In master mode) These bits control the number of wait states to be inserted in data transfers. The SPI module counts SPI_SCLK by WCC for delaying the next word data transfer. 0: No wait states inserted n: n SPI_SCLK wait states inserted Cannot be written when XCH=1.

9.4.6.8 0x0028 SPI Sample Delay Control Register (Default Value: 0x0000_2000)

Offset:	0x0028		Register Name: SPI_SAMP_DL
Bit	Read/Write	Default/Hex	Description
31:16	/	1	1
			SAMP_DL_CAL_START
15	R/W	0x0	Sample Delay Calibration Start
12			When set, it indicates that start sample delay chain calibration.
			Cannot be written when XCH=1.
			SAMP_DL_CAL_DONE
	R	0x0	Sample Delay Calibration Done
14			When set, it indicates that the sample delay chain calibration is
			done and the result of calibration is shown in SAMP_DL.
			Cannot be written when XCH=1.

Offset: 0x0028			Register Name: SPI_SAMP_DL
Bit	Read/Write	Default/Hex	Description
			SAMP_DL
			Sample Delay
			It indicates the number of delay cells corresponding to the current
			card clock. The delay time generated by these delay cells is equal
13:8	R	0x20	to the cycle of the card clock nearly.
			Generally, it is necessary to do drive delay calibration when the
			card clock is changed.
			This bit is valid only when SAMP_DL_CAL_DONE is set.
			Cannot be written when XCH=1.
			SAMP_DL_SW_EN
			Sample Delay Software Enable
7	R/W	0x0	When set, it indicates that enable sample delay specified at
			SAMP_DL_SW.
			Cannot be written when XCH=1.
6	/	/	
			SAMP_DL_SW
			Sample Delay Software
			The relative delay between the clock line and command line, data
5:0	R/W	0x0	lines.
			It can be determined according to the value of SAMP_DL, the cycle
			of the card clock, and the input timing requirement of the device.
			Cannot be written when XCH=1.

9.4.6.9 0x0030 SPI Master Burst Counter Register (Default Value: 0x0000_0000)

Offset:	0x0030		Register Name: SPI_MBC
Bit	Read/Write Default/Hex		Description
31:24	/	/	/

Offset: 0x0030			Register Name: SPI_MBC
Bit	Read/Write	Default/Hex	Description
			MBC
			Master Burst Counter
			In master mode, this field specifies the total burst number which
			includes the TXD, RXD, and dummy burst.
23:0	R/W	0x0	0: 0 burst
			1: 1 burst
			N: N bursts
			Cannot be written when XCH=1.

9.4.6.10 0x0034 SPI Master Transmit Counter Register (Default Value: 0x0000_0000)

Offset	: 0x0034		Register Name: SPI_MTC
Bit	Read/Write	Default/Hex	Description
31:24	1		1
23:0	R/W	0x0	MWTC Master Write Transmit Counter In master mode, this field specifies the burst number that should be sent to TXFIFO before automatically sending dummy bursts. For saving bus bandwidth, the dummy bursts (all zero bits or all one bits) are sent by SPI Controller automatically. 0: 0 burst 1: 1 burst
			 N: N bursts Cannot be written when XCH=1.

9.4.6.11 0x0038 SPI Master Burst Control Counter Register (Default Value: 0x0000_0000)

Offset:	0x0038		Register Name: SPI_BCC
Bit	Bit Read/Write Default/Hex		Description
31:30	/	/	/

Offset	0x0038		Register Name: SPI_BCC
Bit	Read/Write	Default/Hex	Description
29	R/W	0x0	Quad_EN Quad_Mode_EN The Quad mode includes Quad-Input and Quad-Output. 0: Quad mode disable 1: Quad mode enable Cannot be written when XCH=1.
28	R/W	0x0	DRM Master Dual Mode RX Enable It is only valid when Quad_Mode_EN=0. 0: RX uses the single-bit mode 1: RX uses the dual mode Cannot be written when XCH=1.
27:24	R/W	0x0	DBC Master Dummy Burst Counter In master mode, this field specifies the burst number that should be sent before receiving in dual SPI mode. The data does not care by the device. 0: 0 burst 1: 1 burst N: N bursts Cannot be written when XCH=1
23:0	R/W	0x0	STC Master Single Mode Transmit Counter In master mode, this field specifies the burst number that should be sent in the single mode before automatically sending dummy bursts. This is the first transmit counter in all bursts. 0: 0 burst 1: 1 burst N: N bursts Cannot be written when XCH=1

9.4.6.12 0x0040 SPI Bit-Aligned Transfer Configure Register (Default Value: 0x0000_00A0)

Offset: 0x0040			Register Name: SPI_BATC
Bit	Read/Write	Default/Hex	Description
31	R/WAC	0x0	TCE Transfer Control Enable In master mode, it is used to start to transfer the serial bits frame, it is only valid when Work Mode Select==0x10/0x11. 0: Idle 1: Initiates transfer Writing "1" to this bit will start to transfer serial bits frame (the value comes from the SPI TX Bit Register or SPI RX Bit Register), and will auto-clear after the bursts transfer completely. Writing '0' to this bit has no effect.
30	R/W	0x0	MSMS Master Sample Standard O: Delay Sample Mode 1: Standard Sample Mode In Standard Sample Mode, the SPI master samples the data at the standard rising edge of SCLK for each SPI mode; In Delay Sample Mode, the SPI master samples data at the edge that is half cycle delayed by the standard rising edge of SCLK defined in respective SPI mode.
29:26	/	1	7
25	R/W1C	0x0	TBC Transfer Bits Completed When set, this bit indicates that the last bit of the serial data frame in SPI TX Bit Register (or SPI RX Bit Register) has been transferred completely. Writing 1 to this bit clears it. 0: Busy 1: Transfer Completed It is only valid when Work Mode Select==0x10/0x11.
24	R/W	0x0	TBC_INT_EN Transfer Bits Completed Interrupt Enable 0: Disable 1: Enable It is only valid when Work Mode Select==0x10/0x11.

Offset	0x0040		Register Name: SPI_BATC
Bit	Read/Write	Default/Hex	Description
21:16	R/W	0x00	RX_FEM_LEN Configure the length of serial data frame (burst) of RX 000000: 0 bit 000001: 1 bit 100000: 32 bits Other values: reserved It is only valid when Work Mode Select==0x10/0x11, and cannot
	,	,	be written when TCE (SPI_BATC[31])=1.
15:14	/ R/W	7 0x00	/ TX_FEM_LEN Configure the length of serial data frame (burst) of TX 000000: 0 bit 000001: 1 bit 100000: 32 bits
			Other values: reserved It is only valid when Work Mode Select==0x10/0x11, and cannot be written when TCE=1. SS LEVEL
7	R/W	0x1	 When control SS signal manually, set this bit to '1' or '0' to control the level of SS signal. 0: Set SS to low 1: Set SS to high It is only valid when Work Mode Select==0x10/0x11, and only work in Mode0, cannot be written when TCE=1.
6	R/W	0x0	SS_OWNER SS Output Owner Select Usually, the controller sends the SS signal automatically with data together. When this bit is set to 1, the software must manually write SS_LEVEL (SPI_BATC[7]) to 1 or 0 to control the level of the SS signal. 0: SPI controller 1: Software It is only valid when Work Mode Select==0x10/0x11, and only work in Mode0, cannot be written when TCE=1.

Offset:	Offset: 0x0040		Register Name: SPI_BATC
Bit	Read/Write	Default/Hex	Description
			SPOL
			SPI Chip Select Signal Polarity Control
5	R/W	0x1	0: Active high polarity (0 = Idle)
	.,	•//-	1: Active low polarity (1 = Idle)
			It is only valid when Work Mode Select==0x10/0x11, and only work
			in Mode0, cannot be written when TCE=1.
4	/	/	/
			SS_SEL
		0x0	SPI Chip Select
	R/W		Select one of four external SPI Master/Slave Devices
			00: SPI_SSO will be asserted
3:2			01: SPI_SS1 will be asserted
			10: SPI_SS2 will be asserted
			11: SPI_SS3 will be asserted
			It is only valid when Work Mode Select==0x10/0x11, and only work
			in Mode0, cannot be written when TCE=1.
			WMS
			Work Mode Select
			00: Data frame is byte aligned in standard SPI, dual-output/dual
1:0	R/W	0x0	input SPI, dual IO SPI, and quad-output/quad-input SPI
			01: Reserved
			10: Data frame is bit aligned in 3-wire SPI
			11: Data frame is bit aligned in standard SPI

9.4.6.13 0x0044 SPI Bit-Aligned Clock Configuration Register (Default Value: 0x0000_0000)

Offset	:: 0x0044		Register Name: SPI_BA_CCR
Bit	Read/Write	Default/Hex	Description
31:8	/	/	/
7:0	R/W	0x0	CDR_N Clock Divide Rate (Master Mode Only) The SPI_SCLK is determined according to the following equation: SPI_CLK = Source_CLK / (2*(CDR_N + 1)). This register is only valid when Work Mode Select==0x10/0x11.

9.4.6.14 0x0048 SPI TX Bit Register (Default Value: 0x0000_0000)

Offset: 0x0048			Register Name: SPI_TBR
Bit	Read/Write	Default/Hex	Description
	R/W	0x0	VTB
			The Value of the Transmit Bits
31:0			This register is used to store the value of the transmitted serial data
51.0			frame.
			In the process of transmission, the LSB is transmitted first.
			This register is only valid when Work Mode Select==0x10/0x11.

9.4.6.15 0x004C SPI RX Bit Register (Default Value: 0x0000_0000)

Offset: 0x004C			Register Name: SPI_RBR
Bit	t Read/Write Default/Hex		Description
31:0			VRB The Value of the Receive Bits This register is used to store the value of the received serial data
51.0	R/W	0x0	frame. In the process of transmission, the LSB is transmitted first. This register is only valid when Work Mode Select==0x10/0x11.

9.4.6.16 0x0088 SPI Normal DMA Mode Control Register (Default Value: 0x0000_00E5)

Offset	t: 0x0088		Register Name: SPI_NDMA_MODE_CTL
Bit	Read/Write	Default/Hex	Description
31:8	/	1	/
			SPI_ACT_M
		0x11	SPI NDMA Active Mode
7:6	DAA		00: dma_active is low
7.0	R/W		01: dma_active is high
			10: dma_active is controlled by dma_request (DRQ)
			11: dma_active is controlled by controller
		0x1	SPI_ACK_M
5	R/W		SPI NDMA Acknowledge Mode
	.,,		0: active fall do not care ack
			1: active fall must after detect ack is high

Offset: 0x0088			Register Name: SPI_NDMA_MODE_CTL
Bit	Read/Write	Default/Hex	Description
		0x05	SPI_DMA_WAIT
4:0	R/W		Delay Cycles
4.0	Ny VV		The counts of hold cycles from DMA last signal high to dma_active
			high

9.4.6.17 0x0100 DBI Control Register 0 (Default Value: 0x0010_0000)

Offset:	Offset: 0x0100		Register Name: DBI_CTL_0
Bit	Read/Write	Default/Hex	Description
31	R/W	0x0	CMDT Command Type 0: Write Command 1: Read Command
30:20	R/W	0x1	WCDC Write Command Dummy Cycles Controls dummy cycles between two write commands Range 1~255 Default Condition: there is a dbi_clk cycle between each command or parameter.
19	R/W	0x0	DAT_SEQ Output Data Sequence 0: MSB First 1: LSB First
18:16	R/W	0x0	RGB_SEQ Output RGB Sequence 000: RGB 001: RBG 010: GRB 011: GBR 100: BRG 101: BGR 110, 111: Reserved

Offset: 0x0100			Register Name: DBI_CTL_0
Bit	Read/Write	Default/Hex	Description
15	R/W	0x0	TRAN_MOD
			Transmit Mode
			0: Command/Parameter
			1: Video
14:12	R/W	0x0	DAT_FMT
			Output Data Format
			000: RGB111
			001: RGB444
			010: RGB565
			011: RGB666
			100: RGB888 (only for 2 Data Lane Interface)
			101~111: Reserved
11	/	/	
10:8	R/W	0x0	DBI Interface
			000: 3 Line Interface I
			001: 3 Line Interface II
			010: 4 Line Interface I
			011: 4 Line Interface II
			100: 2 Data Lane Interface

Offset	0x0100		Register Name: DBI_CTL_0
Bit	Read/Write	Default/Hex	Description
			RGB_Source_Format When video_source_type is RGB32 (DBI_CTL_0[bit0] = 0) 0000: RGB 0001: RBG 0010: GRB 0011: GBR
7.4	D AM	00	0100: BRG 0101: BGR Others: Reserved
7:4	R/W	0x0	When video_source_type is RGB16 (DBI_CTL_0[bit0] = 1) 0000: RGB 0001~0100: Reserved 0101: BGR 0110: GRBG_0 {G[5:3]R[4:0]B[4:0]G[2:0]} 0111: GBRG_0 {G[5:3]B[4:0]R[4:0]G[2:0]} 1000: GRBG_1 {G[2:0]R[4:0]B[4:0]G[5:3]} 1001: GBRG_1 {G[2:0]B[4:0]R[4:0]G[5:3]} Others: Reserved
3	R/W	0x0	DUM_VAL Dummy Cycle Value Output Value During Dummy Cycle
2	R/W	0x0	RGB_BO RGB Bit Order O: Remain the sequence of RGB data 1: Swap the higher bit and the lower bit for each component of DRAM RGB
1	R/W	0x0	ELEMENT_A_POS Element A Position Only for RGB32 Data Format 0: A component is in the bit[31:24] of data source 1: A component is in the bit[7:0] of data source
0	R/W	0x0	VI_SRC_TYPE Video Source Type 0: RGB32 1: RGB16

9.4.6.18 0x0104 DBI Control Register 1 (Default Value: 0x0000_0001)

Offset: 0x0104			Register Name: DBI_CTL_1
Bit	Read/Write	Default/Hex	Description
			DBI_SOFT_TRG
			DBI soft trigger
31	R/WAC	0x0	It is only available for software trigger mode. Writing '1' to this bit
			will start DBI TX module and auto clear to '0' when completing start
			operation, writing '0' to this bit has no effect.
			DBI EN MODE SEL
			DBI Enable Mode Select
30:29	R/W	0x0	00: Always on DBI mode
50.25	.,	UNU	01: Software trigger mode
			10: Timer trigger mode
			11: TE trigger mode
28	/	/	
			RGB666_FMT
			2 Data Lane RGB666 Format
27:26	R/W	0x0	00: Normal Format
			01: Special Format for ILITEK
			10: Special Format for New Vision
			DBI_RXCLK_INV
25	R/W	0x0	DBI rx clock inverse
	r/ vv		0: Sample data by using the positive edge of the output clock
			1: Sample data by using the negative edge of the output clock
			DBI_CLKO_MOD
			DBI output clock mode
24	R/W	0x0	0: DBI clock always on (DCX Setup/hold equals one clock cycle)
			1: DBI clock auto gating (DCX Setup/hold equals to a half clock cycle)

Offset:	Offset: 0x0104		Register Name: DBI_CTL_1
Bit	Read/Write	Default/Hex	Description
			DBI_CLKO_INV DBI clock output inverse
			When the bit24 (DBI output clock mode) is 0.
			0: The falling edge releases the CSX signal, and the falling edge releases data
23	R/W	0x0	1: The rising edge releases the CSX signal, and the rising edge releases data
			When the bit24 (DBI output clock mode) is 1.
			0: The rising edge releases the CSX signal, and the falling edge releases data
			1: The falling edge releases the CSX signal, and the rising edge releases data
			DCX_DATA
22	R/W	0.0	DCX Data Value
22		0x0	0: DCX Value equal to 0
			1: DCX Value equal to 1
			RGB 16 Data Source Select RGB 16 Data Source Select
21	R/W	0x0	0: Pixel1 is stored in the higher bit of address, and Pixel0 is stored
			in the lower bit of address 1: Pixel0 is stored in the higher bit of address, and Pixel1 is stored
			in the lower bit of address
			RDAT LSB
20	DAA	00	Bit Order of Read Data
20	R/W	0x0	0: A reading data is the higher bit
			1: A reading data is the lower bit
19:16	/	1	/
			RCDC
15:8	R/W	0x0	Read Command Dummy Cycles
			The dummy cycle between the read command and read data
			Reading 1-byte (8 bits) data has not dummy cycle.
			RDBN
7:0	R/W	0x1	Read Data Number of Bytes
			Sample Bytes data based on configuration.

9.4.6.19 0x0108 DBI Control Register 2 (Default Value: 0x0000_4000)

Offset:	0x0108		Register Name: DBI_CTL_2
Bit	Read/Write	Default/Hex	Description
31:26	/	/	/
15	R/W	0x0	DBI_FIFO_DRQ_EN DBI FIFO DMA Request Enable 0: Disable 1: Enable
14:8	R/W	0x40	DBI_TRIG_LEVEL DBI FIFO Empty Request Trigger Level
7	/	/	/
6	R/W	0x0	DBI_SDI_OUT_SEL DBI SDI PIN Output Select The signal is used with the DBI SDI PIN Function Sel bit. 0: Output WRX (When DBI DCX PIN Function Sel = 0, the SDI pin outputs data) 1: Output DCX
5	R/W	0x0	DBI_DCX_SEL DBI DCX PIN Function Select 0: DBI DCX Function 1: WRX (2 Data Lane Interface)
4:3	R/W	0x0	DBI_SDI_SEL DBI SDI PIN Function Select 00: DBI_SDI (Interface II) 01: DBI_TE 10: DBI_DCX 11: Reserved
2	R/W	0x0	TE_DBC_SEL TE debounce function select 0: debounce 1: no-debounce
1	R/W	0x0	TE_TRIG_SEL TE edge trigger select 0: TE rising edge 1: TE falling edge
0	R/W	0x0	TE_EN TE enable 0: TE Disable 1: TE Enable

9.4.6.20 0x010C DBI Timer Control Register (Default Value: 0x0000_0000)

frame blanking. It is used to set the time at which the interrupt of the DBI Timer i	Offset: 0x010C			Register Name: DBI_Timer
31 R/W 0x0 DBI Timer Enable 0: Enable 1: Disable 31 DBI Timer Enable 0: Enable 	Bit	Read/Write	Default/Hex	Description
31 R/W 0x0 0: Enable 1: Disable 1: Disable BI Timer Value It sets the time interval between sending data twice, which in frame blanking. 30:0 R/W 0x0 R/W 0x0 It is used to set the time at which the interrupt of the DBI Timer in triggered. When the Timer_EN is 1, the timer starts to count (the clock of the counting is SCLK), and the counter reaches the target value to trigger the Timer_INT of DBI, the data will start to send in series.				DBI_TM_EN
30:0 R/W 0: Enable 30:0 R/W 0x0 0: Enable DBI Timer Value It sets the time interval between sending data twice, which i frame blanking. It is used to set the time at which the interrupt of the DBI Timer i triggered. When the Timer_EN is 1, the timer starts to count (the clock of the counting is SCLK), and the counter reaches the targe value to trigger the Timer_INT of DBI, the data will start to send in series.	21	R/M	0×0	DBI Timer Enable
30:0 R/W 0x0 DBI Timer Value It sets the time interval between sending data twice, which in frame blanking. It is used to set the time at which the interrupt of the DBI Timer in triggered. When the Timer_EN is 1, the timer starts to count (the clock of the counting is SCLK), and the counter reaches the target value to trigger the Timer_INT of DBI, the data will start to send in series.	21		0.00	0: Enable
30:0R/W0x0It sets the time interval between sending data twice, which in frame blanking. It is used to set the time at which the interrupt of the DBI Timer in triggered. When the Timer_EN is 1, the timer starts to count (the clock of the counting is SCLK), and the counter reaches the target value to trigger the Timer_INT of DBI, the data will start to send in series.				1: Disable
30:0R/W0x0frame blanking. It is used to set the time at which the interrupt of the DBI Timer is triggered. When the Timer_EN is 1, the timer starts to count (the clock of the counting is SCLK), and the counter reaches the target value to trigger the Timer_INT of DBI, the data will start to send in series.				DBI Timer Value
30:0 R/W 0x0 It is used to set the time at which the interrupt of the DBI Timer is triggered. When the Timer_EN is 1, the timer starts to count (the clock of the counting is SCLK), and the counter reaches the target value to trigger the Timer_INT of DBI, the data will start to send in series.				It sets the time interval between sending data twice, which is
30:0 R/W 0x0 triggered. When the Timer_EN is 1, the timer starts to count (the clock of the counting is SCLK), and the counter reaches the target value to trigger the Timer_INT of DBI, the data will start to send in series.				frame blanking.
clock of the counting is SCLK), and the counter reaches the targe value to trigger the Timer_INT of DBI, the data will start to send in series.				It is used to set the time at which the interrupt of the DBI Timer is
value to trigger the Timer_INT of DBI, the data will start to send in series.	30:0	R/W	0x0	triggered. When the Timer_EN is 1, the timer starts to count (the
series.				
Note. Do not count when sending the series data.				
				Note. Do not count when sending the senes data.

9.4.6.21 0x0110 DBI Video Size Register (Default Value: 0x01E0_0140)

1

Offset: 0x0110			Register Name: DBI_Video_Size
Bit	Read/Write	Default/Hex	Description
31:27	1	1	1
26:16	R/W	0x1E0	V_SIZE It is used to generate the Frame int.
15:11	/	1	/
10:0	R/W	0x140	H_SIZE It is used to generate the Line int.

9.4.6.22 0x0120 DBI Interrupt Register (Default Value: 0x0000_4000)

Offset:	0x0120		Register Name: DBI_INT
Bit	Read/Write	Default/Hex	Description
31:15	/	/	/

Offset:	0x0120		Register Name: DBI_INT
Bit	Read/Write	Default/Hex	Description
			DBI_FIFO_EMPTY_INT
1.4	D/M/1C	01	DBI FIFO Empty Interrupt Status
14	R/W1C	0x1	0: DBI_FIFO is not empty
			1: DBI_FIFO is empty
			DBI_FIFO_FULL_INT
10	DAMAG	00	DBI FIFO Full Interrupt Status
13	R/W1C	0x0	0: DBI_FIFO is not full
			1: DBI_FIFO is full
			TIMER_INT
			It indicates that the timer has been count sclk cycles to the value
12	R/W1C	0x0	of DBI_Timer Register[30:0]. Writing 1 to this bit clears it.
			0: Timer has not been achieved the objective
			1: Timer has been achieved the objective
			RD_DONE_INT
			It indicates that the number of byte setting in DBI_Control
11	R/W1C	0x0	Register 1[19:8] has been read. Writing 1 to this bit clears it.
			0: All data has not been read
			1: All data has been read
			TE_INT
			It indicates that the TE signal has been changed. Writing 1 to this
10	R/W1C	0x0	bit clears it.
			0: TE signal has not been changed
			1: TE signal has been changed
			FRAM_DONE_INT
			It indicates that a frame video data has been sent. Writing 1 to this
9	R/W1C	0x0	bit clears it.
			0: A frame video has not been sent
			1: A frame video has been sent
			LINE_DONE_INT
	- 6		It indicates that a line of video data has been sent. Writing 1 to
8	R/W1C	0x0	this bit clears it.
			0: A line of video data has not been sent
			1: A line of video data has been sent
7	/	/	/

Dx0120		Register Name: DBI_INT
Read/Write	Default/Hex	Description
		DBI_FIFO_EMPTY_INT_EN
D // /	0.40	DBI FIFO Empty Interrupt Enable
r, vv	UXU	0: Disable
		1: Enable
		DBI_FIFO_FULL_INT_EN
	0.40	DBI FIFO Full Interrupt Enable
r, vv	UXU	0: Disable
		1: Enable
		TIMER_INT_EN
D /AA	00	Timer Interrupt Enable
R/W	0x0	0: Disable
		1: Enable
R/W		RD_DONE_INT_EN
	0.0	Read Done Interrupt Enable
	0x0	0: Disable
		1: Enable
	4	TE_INT_EN
2.0.0		TE Interrupt Enable
R/ W	UXU	0: Disable
		1: Enable
		FRAM_DONE_INT_EN
R/W	0x0	Frame Done Interrupt Enable
		0: Disable
		1: Enable
		LINE_DONE_INT_EN
D (M)	2.0	Line Done Interrupt Enable
R/W	UXU	0: Disable
		1: Enable
	Read/Write R/W R/W R/W R/W R/W	Read/Write Default/Hex R/W 0x0 R/W 0x0

9.4.6.23 0x0124 DBI Debug Register 0 (Default Value: 0x007F_0000)

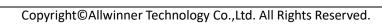
Offset:	0x0124		Register Name: DBI_Debug_0
Bit	Read/Write	Default/Hex	Description
31:23	/	/	/

Offset:	0x0124		Register Name: DBI_Debug_0
Bit	Read/Write	Default/Hex	Description
22.46		0.75	
22:16	R	0x7F	DBI_FIFO ROOM VALID 0~127 Words
15:13	/	/	/
			TE_VAL
12	R	0x0	TE input value
		•	0: TE not Trigger
			1: TE Trigger
			DBI_RXCS
11:8	R	0x0	FSM for DBI Receive
			RX_BS0 ~ RX_BS6 , Gray - Code
			SH_CS
7:4	R	0x0	FSM for shifter
			0~11 : SH0~SH11
			DBI_TXCS
			FSM for DBI Transmit
3:2			00: IDLE
5.2	1	1	01: SHIF
			10: DUMY
			11: READ
			MEM_CS
			FSM for DBI Memory
1:0	R	0x0	00: IDLE_FRM
			01: FRM_POS
			10: FRM_RDY

9.4.6.24 0x0128 DBI Debug Register 1 (Default Value: 0x0000_0000)

Offset:	0x0128		Register Name: DBI_Debug_1
Bit	Read/Write	Default/Hex	Description
31:26	/	/	/
			LCNT
25:16	R	0x0	Line counter
			The number of pixel lines that are currently sent
15:12	/	/	/

Offset: 0x0128			Register Name: DBI_Debug_1
Bit	Read/Write Default/Hex		Description
	R	0x0	CCNT
11:0			Component counter
11.0			The number of RGB components that are currently sent
			The field is equal to pixel_cnt *3.


9.4.6.25 0x0200 SPI TX Data Register (Default Value: 0x0000_0000)

Offset: 0x0200			Register Name: SPI_TXD
Bit	Read/Write	Default/Hex	Description
			ТДАТА
			Transmit Data
			This register can be accessed in the byte, half-word, or word unit by
		0x0	AHB. In the byte accessing method, if there are rooms in TXFIFO,
			one burst data is written to TXFIFO and the depth is increased by 1.
31:0 R/W	R/W/		In the half-word accessing method, two SPI burst data are written
	1,7,00		and the TXFIFO depth is increased by 2. In the word accessing
			method, four SPI burst data are written and the TXFIFO depth is
			increased by 4.
			Note: This address is writable-only if TF_TEST is '0', and if TF_TEST
			is set to '1', this address is readable and writable to test the TX
			FIFO through the AHB bus.
			1

9.4.6.26 0x0300 SPI RX Data Register (Default Value: 0x0000_0000)

Offset: 0x0300			Register Name: SPI_RXD	
Bit	Read/Write	Default/Hex	Description	
31:0	R	0x0	RDATA Receive Data This register can be accessed in the byte, half-word, or word u by AHB. In the byte accessing method, if there are data in RXFII the top word is returned and the RXFIFO depth is decreased by In the half-word accessing method, two SPI bursts are returned a the RXFIFO depth is decreased by 2. In the word accessing meth the four SPI bursts are returned and the RXFIFO depth is decrease by 4. Note: This address is readable-only if RF_TEST is '0', and if RF_TI is set to '1', this address is readable and writable to test the FIFO through the AHB bus.	

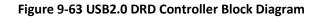
9.5 USB2.0 DRD

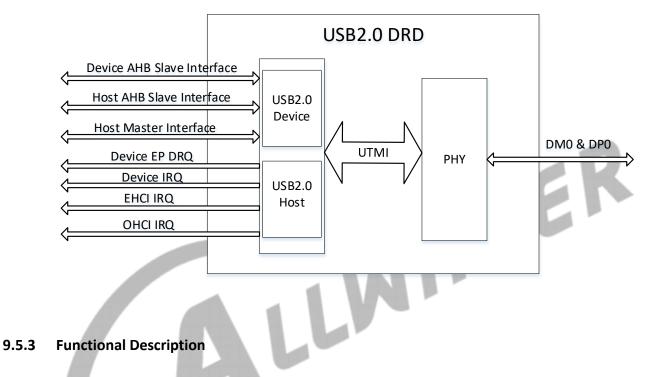
9.5.1 Overview

The USB2.0 dual-role device (USB2.0 DRD) supports both device and host functions which can also be configured as a Host-only or Device-only controller. It complies with the USB2.0 Specification.

For saving CPU bandwidth, the DMA interface of the DRD module can also support the external DMA controller to do the data transfer between the memory and the DRD FIFO. The DRD core also supports USB power saving functions.

The USB2.0 DRD has the following features:

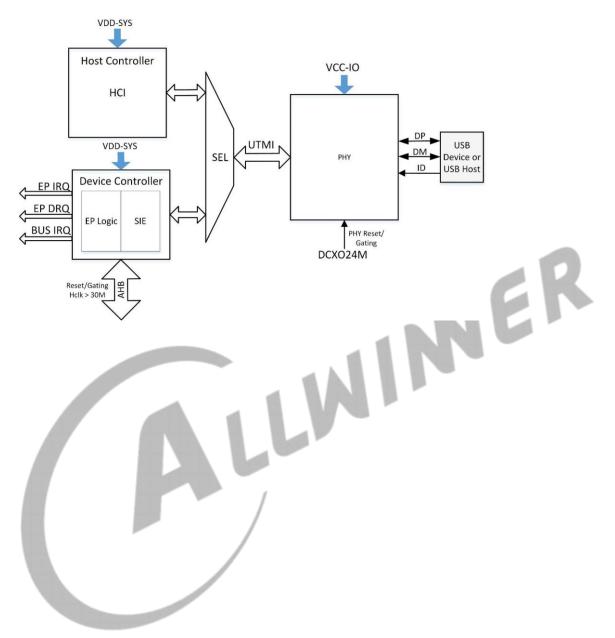

- Complies with USB2.0 Specification
- Supports USB Host function
 - Compatible with Enhanced Host Controller Interface (EHCI) Specification, Version 1.0
 - Compatible with Open Host Controller Interface (OHCI) Specification, Version 1.0a
 - Supports High-Speed (HS, 480 Mbit/s), Full-Speed (FS, 12 Mbit/s), and Low-Speed (LS, 1.5 Mbit/s)
 - Supports only 1 USB Root port shared between EHCI and OHCI
- Supports USB Device function
 - Supports High-Speed (HS, 480 Mbit/s), Full-Speed (FS, 12 Mbit/s)
 - Supports bi-directional endpoint0 (EP0) for Control transfer
 - Up to 10 user-configurable endpoints (EP1+, EP1-, EP2+, EP2-, EP3+, EP3-, EP4+, EP4-, EP5+, EP5-) for Bulk transfer, Isochronous transfer and Interrupt transfer
 - Up to (8 KB + 64 Bytes) FIFO for all EPs (including EPO)
 - Supports interface to an external Normal DMA controller for every EP
- Supports an internal DMA controller for data transfer with memory
- Supports High-Bandwidth Isochronous & Interrupt transfers
- Automated splitting/combining of packets for Bulk transfers
- Supports point-to-point and point-to-multipoint transfer in both Host and Peripheral modes
- Includes automatic ping capabilities
- Soft connect/disconnect function
- Performs all transaction scheduling in hardware
- Power optimization and power management capabilities



• Device and host controller share a 8K SRAM and a physical PHY

9.5.2 Block Diagram

The following figure shows the block diagram of USB2.0 DRD Controller.


9.5.3.1 External Signals

Signal Description T		Туре
USBO-DP	USB2.0 DRD differential signal positive	AI/O
USBO-DM	USB2.0 DRD differential signal negative	AI/O

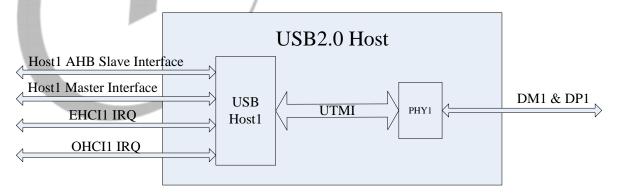
9.5.3.2 Controller and PHY Connection Diagram

Figure 9-64 USB2.0 DRD Controller and PHY Connection Diagram

9.6 USB2.0 HOST

9.6.1 Overview

The USB Host Controller is fully compliant with USB 2.0 Specification, Enhanced Host Controller Interface (EHCI) Specification Revision 1.0 and Open Host Controller Interface (OHCI) Specification Release 1.0a.


The USB2.0 host controller includes the following features:

- Complies with USB2.0 Specification
- Supports USB2.0 Host function
 - Compatible with Enhanced Host Controller Interface (EHCI) Specification, Version 1.0
 - Compatible with Open Host Controller Interface (OHCI) Specification, Version 1.0a
 - Supports High-Speed (HS, 480 Mbit/s), Full-Speed (FS, 12 Mbit/s) and Low-Speed (LS, 1.5 Mbit/s) Device
 - Supports only 1 USB Root port shared between EHCI and OHCI
- An internal DMA Controller for data transfer with memory

9.6.2 Block Diagram

The following figure shows the block diagram of USB2.0 Host Controller.

Figure 9-65 USB2.0 Host Controller Block Diagram

Functional Description 9.6.3

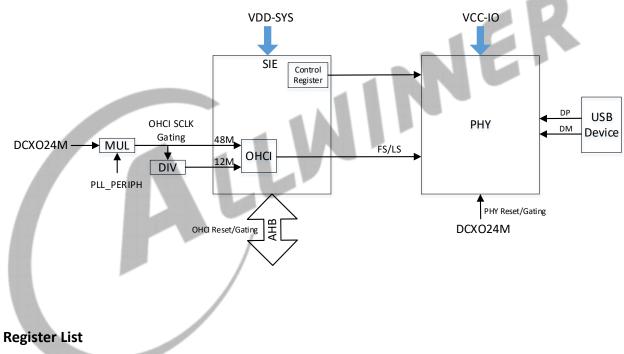

External Signals 9.6.3.1

Table 9-19 USB2.0 Host External Signals

Signal	Description	Туре
USB1-DP	USB2.0 Host differential signal positive	AI/O
USB1-DM USB2.0 Host differential signal negative		AI/O

9.6.3.2 Controller and PHY Connection Diagram

Figure 9-66 USB2.0 Host Controller and PHY Connection Diagram

9.6.4

Module Name	Base Address
USB1	0x04200000

Register Name	Offset	Description		
EHCI Capability Register				
E_CAPLENGTH	0x0000	EHCI Capability Register Length Register		
E_HCIVERSION	0x0002	EHCI Host Interface Version Number Register		
E_HCSPARAMS	0x0004	EHCI Host Control Structural Parameter Register		
E_HCCPARAMS	0x0008	EHCI Host Control Capability Parameter Register		

Register Name	Offset	Description
E_HCSPPORTROUTE	0x000C	EHCI Companion Port Route Description
EHCI Operational Register		
E_USBCMD	0x0010	EHCI USB Command Register
E_USBSTS	0x0014	EHCI USB Status Register
E_USBINTR	0x0018	EHCI USB Interrupt Enable Register
E_FRINDEX	0x001C	EHCI USB Frame Index Register
E_CTRLDSSEGMENT	0x0020	EHCI 4G Segment Selector Register
E_PERIODICLISTBASE	0x0024	EHCI Frame List Base Address Register
E_ASYNCLISTADDR	0x0028	EHCI Next Asynchronous List Address Register
E_CONFIGFLAG	0x0050	EHCI Configured Flag Register
E_PORTSC	0x0054	EHCI Port Status/Control Register
OHCI Control and Status Pa	rtition Register	
O_HcControl	0x0404	OHCI Control Register
O_HcCommandStatus	0x0408	OHCI Command Status Register
O_HcInterruptStatus	0x040C	OHCI Interrupt Status Register
O_HcInterruptEnable	0x0410	OHCI Interrupt Enable Register
O_HcInterruptDisable	0x0414	OHCI Interrupt Disable Register
OHCI Memory Pointer Parti	tion Register	
O_HcHCCA	0x0418	OHCI HCCA Base
O_HcPeriodCurrentED	0x041C	OHCI Period Current ED Base
O_HcControlHeadED	0x0420	OHCI Control Head ED Base
O_HcControlCurrentED	0x0424	OHCI Control Current ED Base
O_HcBulkHeadED	0x0428	OHCI Bulk Head ED Base
O_HcBulkCurrentED	0x042C	OHCI Bulk Current ED Base
O_HcDoneHead	0x0430	OHCI Done Head Base
OHCI Frame Counter Partiti	on Register	
O_HcFmInterval	0x0434	OHCI Frame Interval Register
O_HcFmRemaining	0x0438	OHCI Frame Remaining Register
O_HcFmNumber	0x043C	OHCI Frame Number Register
O_HcPerioddicStart	0x0440	OHCI Periodic Start Register
O_HcLSThreshold	0x0444	OHCI LS Threshold Register
OHCI Root Hub Partition Re	gister	
O_HcRhDescriptorA	0x0448	OHCI Root Hub Descriptor Register A
O_HcRhDesriptorB	0x044C	OHCI Root Hub Descriptor Register B

Register Name	Offset	Description		
O_HcRhStatus	0x0450	OHCI Root Hub Status Register		
O_HcRhPortStatus	0x0454	OHCI Root Hub Port Status Register		
HCI Controller and PHY Interface Register				
HCI_Interface	0x0800	HCI Interface Register		
HCI_CTRL3	0x0808	HCI Control Register		
PHY_Control	0x0810	PHY Control Register		
PHY_STATUS	0x0824	PHY Status Register		
HCI SIE Port Disable Control	0x0828	HCI SIE Port Disable Control Register		

9.6.5 EHCI Register Description

9.6.5.1 0x0000 EHCI Identification Register (Default Value:0x10)

Offset:0x0000			Register Name: CAPLENGTH
Bit	Bit Read/Write Default/Hex		Description
			CAPLENGTH
7:0	R	0x10	The value in these bits indicates an offset to add to register base to
			find the beginning of the Operational Register Space.

9.6.5.2 0x0002 EHCI Host Interface Version Number Register (Default Value:0x0100)

Offse	Offset: 0x0002		Register Name: HCIVERSION
Bit	Bit Read/Write Default/Hex		Description
			HCIVERSION
			This is a 16-bit register containing a BCD encoding of the EHCI
15:0	R	0x0100	revision number supported by this host controller. The most
			significant byte of this register represents a major revision and the
			least significant byte is the minor revision.

9.6.5.3 0x0004 EHCI Host Control Structural Parameter Register (Default Value:0x0000_1101)

Offset: 0x0004			Register Name: HCSPARAMS
Bit	Read/Write Default/Hex		Description
31:24	/	/	/
23:20	R	0x0	Debug Port Number

Offset: 0x0004			Register Name: HCSPARAMS	
Bit	Read/Write	Default/Hex	Description	
			This register identifies which of the host controller ports is the debug port. The value is the port number (one based) of the debug port. This field will always be '0'.	
19:16	/	/	/	
15:12	R	0x1	Number of Companion Controller (N_CC) This field indicates the number of companion controllers associated with this USB2.0 host controller. A zero in this field indicates there are no companion host controllers. And a value larger than zero in this field indicates there are companion USB1.1 host controller(s). This field will always be '0'.	
11:8	R	0x1	Number of Port per Companion Controller (N_PCC) This field indicates the number of ports supported per companion host controller host controller. It is used to indicate the port routing configuration to system software. This field will always fix with '0'.	
7	R	0x0	Port Routing Rules This field indicates the method used by this implementation for how all ports are mapped to companion controllers. The value of this field has the following interpretation: Value Meaning 0 The first N_PCC ports are routed to the lowest numbered function companion host controller, the next N_PCC port are routed to the next lowest function companion controller, and so on. 1 The port routing is explicitly enumerated by the first N_PORTS elements of the HCSP-PORTTOUTE array. This field will always be '0'.	
6:4	/	/	/	
3:0	R	0x1	N_PORTS This field specifies the number of physical downstream ports implemented on this host controller. The value of this field determines how many port registers are addressable in the Operational Register Space. Valid values are in the range of 0x1 to 0x0f. This field is always 1.	

9.6.5.4 0x0008 EHCI Host Control Capability Parameter Register (Default Value:0x0000_A026)

Offset:	Offset: 0x0008		Register Name: HCCPARAMS
Bit	Read/Write	Default/Hex	Description
31:16	/	/	/
			EHCI Extended Capabilities Pointer (EECP)
15:8	R	0xA0	This optional field indicates the existence of a capabilities list. A value of 00b indicates no extended capabilities are implemented. A non-zero value in this register indicates the offset in PCI configuration space of the first EHCI extended capabiliby. The pointer value must be 40h or greater if implemented to maintain to consistency of the PCI header defined for this calss of device. The value of this field is always '00b'.
			Isochronous Scheduling Threshold
7:4	R	0x2	This field indicates, relative to the current position of the executing host controller, where software can reliably update the isochronous schedule. When bit[7] is zero, the value of the least significant 3 bits indicates the number of micro-frames a host controller can hold a set of isochronous data structures(one or more) before flushing the state. When bit[7] is a one, then host software assumes the host controller may cache an isochronous data structure for an entire frame.
3	1	/	
			Asynchronous Schedule Park Capability If this bit is set to a one, then the host controller supports the park feature for high-speed queue heads in the Asynchronous Schedule.
2	R	0x1	The feature can be disabled or enabled and set to a specific level
			by using the Asynchronous Schedule Park Mode Enable and Asynchronous Schedule Park Mode Count fields in the USBCMD register.
			Programmable Frame List Flag
			If this bit is set to a zero, then system software must use a frame list length of 1024 elements with this host controller. The USBCMD register Frame List Size field is a read-only register and should be set to zero.
1	R	0x1	If set to 1, then system software can specify and use the frame list in the USBCMD register Frame List Size field to cofigure the host controller.
			The frame list must always aligned on a 4K page boundary. This requirement ensures that the frame list is always physically contiguous.
0	/	/	/

9.6.5.5 0x000C EHCI Companion Port Route Description (Default Value:0x0000_0000)

Offset	Offset: 0x000C		Register Name: HCSP-PORTROUTE
Bit	Read/Write	Default/Hex	Description
			HCSP-PORTROUTE
			This optional field is valid only if Port Routing Rules field in
			HCSPARAMS register is set to a one.
			This field is used to allow a host controller implementation to
			explicitly describe to which companion host controller each
	R	0x0	implemented port is mapped. This field is a 15-element nibble
			array (each 4 bit is one array element). Each array location
31:0			corresponds one-to-one with a physical port provided by the host
			controller (e.g. PORTROUTE [0] corresponds to the first PORTSC
			port, PORTROUTE [1] to the second PORTSC port, etc.). The value
			of each element indicates to which the companion host controllers
			this port is routed. Only the first N_PORTS elements have valid
			information. A value of zero indicates that the port is routed to the
			lowest numbered function companion host controller. A value of
			one indicates that the port is routed to the next lowest numbered
			function companion host controller, and so on.

9.6.5.6 0x0010 EHCI USB Command Register (Default Value:0x0008_0B00)

Offset:	Offset: 0x0010			Name: USBCMD	
Bit	Read/Write	Default/Hex	Description		
31:24	/	/	1		
			Interrup	t Threshold Control	
			The valu	e in this field is used by system software to select the	
			maximu	m rate at which the host controller will issue interrupts.	
			The only	valid values are defined below:	
			Value	Minimum Interrupt Interval	
			0x00	Reserved	
23:16	R/W	0x08	0x01	1 micro-frame	
			0x02	2 micro-frame	
			0x04	4 micro-frame	
			0x08	8 micro-frame(default, equates to 1 ms)	
			0x10	16 micro-frame(2ms)	
			0x20	32 micro-frame(4ms)	
			0x40	64 micro-frame(8ms)	

Offset	Offset: 0x0010		Register Name: USBCMD
Bit	Read/Write	Default/Hex	Description
			Any other value in this register yields undefined results. The default value in this field is 0x08 .
			Software modifications to this bit while HC Halted bit is equal to
			zero results in undefined behavior.
15:12	/	1	
	/	1	Asynchronous Schedule Park Mode Enable (OPTIONAL)
11	R	0x1	If the Asynchronous Park Capability bit in the HCCPARAMS register is a one, then this bit defaults to a 1 and is R/W. Otherwise the bit must be a zero and is Read Only. Software uses this bit to enable or disable Park mode. When this bit is one, Park mode is enabled. When this bit is zero, Park mode is disabled.
10	/	/	/
9:8	R	0x3	Asynchronous Schedule Park Mode Count (OPTIONAL) Asynchronous Park Capability bit in the HCCPARAMS register is a one, then this field defaults to 0x3 and is W/R. Otherwise it defaults to zero and is R. It contains a count of the number of successive transactions the host controller is allowed to execute from a high-speed queue head on the Asynchronous schedule before continuing traversal of the Asynchronous schedule. Valid value are 0x1 to 0x3.Software must not write a zero to this bit when Park Mode Enable is a one as it will result in undefined behavior.
7	R/W	0x0	Light Host Controller Reset (OPTIONAL) This control bit is not required. If implemented, it allows the driver to reset the EHCI controller without affecting the state of the ports or relationship to the companion host controllers. For example, the PORSTC registers should not be reset to their default values and the CF bit setting should not go to zero (retaining port ownership relationships). A host software read of this bit as zero indicates the Light Host Controller Reset has completed and it si safe for software to re- initialize the host controller. A host software read of this bit as a one indicates the Light Host
6	R/W	0x0	Interrupt on Async Advance Doorbell This bit is used as a doorbell by software to tell the host controller to issue an interrupt the next time it advances asynchronous schedule. Software must write a 1 to this bit to ring the doorbell. When the host controller has evicted all appropriate cached schedule state, it sets the Interrupt on Async Advance status bit in the USBSTS. if the Interrupt on Async Advance Enable bit in the

Offset	Offset: 0x0010		Register	Name: USBCMD
Bit	Read/Write	Default/Hex	Descripti	ion
			USBINTR	register is a one then the host controller will assert an
			interrupt	at the next interrupt threshold.
			The host	t controller sets this bit to a zero after it has set the
			Interrupt	t on Async Advance status bit in the USBSTS register to a
			one.	
				should not write a one to this bit when the asynchronous
				is disabled. Doing so will yield undefined results.
			-	onous Schedule Enable
				controls whether the host controller skips processing the procesing the processing the processin
			Bit Valu	
5	R/W	0x0		
			0	Do not process the Asynchronous Schedule.
				Use the ASYNLISTADDR register to access the
			1	Asynchronous Schedule.
				ult value of this field is '0b'.
				Schedule Enable
				controls whether the host controller skips processing the
				Schedule. Values mean:
4	R/W	0x0	Bit Valu	
			0	Do not process the Periodic Schedule.
				Use the PERIODICLISTBASE register to access the
			1	Periodic Schedule.
			The defa	ult value of this field is '0b'.
			Frame Lis	st Size
				d is R/W only if Programmable Frame List Flag in the
				AMS registers is set to a one. This field specifies the size of
			the	
			Index	st. The size the frame list controls which bits in the Frame
				should be used for the Frame List Current index. Values
	-		mean:	should be used for the Frame List Current index. Values
3:2	R/W	0x0		Meaning
				1024 elements(4096bytes)Default value
				512 elements(2048byts)
				256 elements(1024bytes)For resource-constrained condition
				reserved
			i ne defa	ult value is '00b'.

Offset	: 0x0010		Register Name: USBCMD
Bit	Read/Write	Default/Hex	Description
1	R/W	0x0	Host Controller Reset This control bit is used by software to reset the host controller. The effects of this on Root Hub registers are similar to a Chip Hardware Reset. When software writes a one to this bit, the Host Controller resets its internal pipelines, timers, counters, state machines, etc. to their initial value. Any transaction currently in progress on USB is immediately terminated. A USB reset is not driven on downstream ports. All operational registers, including port registers and port state machines are set to their initial values. Port ownership reverts to the companion host controller(s). Software must reinitialize the host controller as described in Section 4.1 of the CHEI Specification in order to return the host controller to an operational state. This bit is set to zero by the Host Controller when the reset process is complete. Software cannot terminate the reset process early by writing a zero to this register. Software should not set this bit to a one when the HC Halted bit in
0	R/W	0x0	the USBSTS register is a zero. Attempting to reset an actively running host controller will result in undefined behavior. Run/Stop When set to a 1, the Host Controller proceeds with execution of the schedule. When set to 0, the Host Controller completes the current and any actively pipelined transactions on the USB and then halts. The Host Controller must halt within 16 micro-frames after software clears this bit. The HC Halted bit indicates when the Host Controller has finished its pending pipelined transactions and has entered the stopped state. Software must not write a one to this field unless the Host Controller is in the Halt State. The default value is 0x0.

9.6.5.7 0x0014 EHCI USB Status Register (Default Value:0x0000_1000)

Offset: 0x0014			Register Name: USBSTS	
Bit	Read/Write	Default/Hex	Description	
31:16	/	/	/	
15	R	0x0	Asynchronous Schedule Status	

Offset	0x0014		Register Name: USBSTS
Bit	Read/Write	Default/Hex	Description
			The bit reports the current real status of Asynchronous Schedule. If this bit is a zero then the status of the Asynchronous Schedule is disabled. If this bit is a one then the status of the Asynchronous Schedule is enabled. The Host Controller is not required to immediately disable or enable the Asynchronous Schedule when software transitions the Asynchronous Schedule Enable bit in the USBCMD register. When this bit and the Asynchronous Schedule Enable bit are the same value, the Asynchronous Schedule is either enabled (1) or disabled (0).
14	R	0x0	Periodic Schedule Status The bit reports the current real status of the Periodic Schedule. If this bit is a zero then the status of the Periodic Schedule is disabled. If this bit is a one then the status of the Periodic Schedule is enabled. The Host Controller is not required to <i>immediately</i> disable or enable the Periodic Schedule when software transitions the <i>Periodic Schedule Enable</i> bit in the USBCMD register. When this bit and the <i>Periodic Schedule Enable</i> bit are the same value, the Periodic Schedule is either enabled (1) or disabled (0).
13	R	0x0	Reclamation This is a read-only status bit, which is used to detect an empty asynchronous schedule.
12	R	0x1	HC Halted This bit is a zero whenever the Run/Stop bit is a one. The Host Controller Sets this bit to one after it has stopped executing as a result of the Run/Stop bit being set to 0, either by software or by the Host Controller Hardware (e.g. internal error). The default value is '1'.
11:6	/	1	/
5	R/WC	0x0	Interrupt on Async Advance System software can force the host controller to issue an interrupt the next time the host controller advances the asynchronous schedule by writing a one to the Interrupt on Async Advance Doorbell bit in the USBCMD register. This status bit indicates the assertion of that interrupt source.
4	R/WC	0x0	Host System Error The Host Controller set this bit to 1 when a serious error occurs during a host system access involving the Host Controller module. When this error occurs, the Host Controller clears the Run/Stop bit in the Command register to prevent further execution of the scheduled TDs.
3	R/WC	0x0	Frame List Rollover

Bit	B 1/1		
	Read/Write	Default/Hex	Description
			The Host Controller sets this bit to a one when the Frame List Index rolls over from its maximum value to zero. The exact value at which the rollover occurs depends on the frame list size. For example, if the frame list size is 1024, the Frame Index Register rolls over every time FRINDEX [13] toggles. Similarly, if the size is 512, the Host Controller sets this bit to a one every time FRINDEX [12] toggles.
2	R/WC	0x0	Port Change Detect The Host Controller sets this bit to a one when any port for which the Port Owner bit is set to zero has a change bit transition from a zero to a one or a Force Port Resume bit transition from a zero to a one as a result of a J-K transition detected on a suspended port. This bit will also be set as a result of the Connect Status Chang being set to a one after system software has relinquished ownership of a connected port by writing a one to a port's Port Owner bit.
1	R/WC	0x0	USB Error Interrupt(USBERRINT) The Host Controller sets this bit to 1 when completion of USB transaction results in an error condition(e.g. error counter underflow).If the TD on which the error interrupt occurred also had its IOC bit set, both. This bit and USBINT bit are set.
0	R/WC	0x0	USB Interrupt(USBINT) The Host Controller sets this bit to a one on the completion of a USB transaction, which results in the retirement of a Transfer Descriptor that had its IOC bit set. The Host Controller also sets this bit to 1 when a short packet is detected (actual number of bytes received was less than the expected number of bytes)

9.6.5.8 0x0018 EHCI USB Interrupt Enable Register (Default Value:0x0000_0000)

Offset: 0x0018			Register Name: USBINTR
Bit	Read/Write	Default/Hex	Description
31:6	/	/	/
5	R/W	0x0	Interrupt on Async Advance Enable When this bit is 1, and the Interrupt on Async Advance bit in the USBSTS register is 1, the host controller will issue an interrupt at the next interrupt threshold. The interrupt is acknowledged by software clearing the Interrupt on Async Advance bit.

Offset: 0x0018			Register Name: USBINTR	
Bit	Read/Write	Default/Hex	Description	
4	R/W	0x0	Host System Error Enable When this bit is 1, and the Host System Error Status bit in the USBSTS register is 1, the host controller will issue an interrupt. The interrupt is acknowledged by software clearing the Host System Error bit.	
3	R/W	0x0	Frame List Rollover Enable When this bit is 1, and the Frame List Rollover bit in the USBSTS register is 1, the host controller will issue an interrupt. The interrupt is acknowledged by software clearing the Frame List Rollover bit.	
2	R/W	0x0	Port Change Interrupt Enable When this bit is 1, and the Port Chang Detect bit in the USBSTS register is 1, the host controller will issue an interrupt. The interrupt is acknowledged by software clearing the Port Chang Detect bit.	
1	R/W	0x0	USB Error Interrupt Enable When this bit is 1, and the USBERRINT bit in the USBSTS register is 1,the host controller will issue an interrupt at the next interrupt threshold. The interrupt is acknowledged by software clearing the USBERRINT bit.	
0	R/W	0x0	USB Interrupt Enable When this bit is 1, and the USBINT bit in the USBSTS register is 1, the host controller will issue an interrupt at the next interrupt threshold. The interrupt is acknowledged by software clearing the USBINT bit	

9.6.5.9 0x001C EHCI Frame Index Register (Default Value:0x0000_0000)

Offset: 0x001C			Register Name: FRINDEX	
Bit	Read/Write	Default/Hex	t/Hex Description	
31:14	/	/	/	
			Frame Index	
			The value in this register increment at the end of each time frame	
			(e.g. micro-frame). Bits[N:3] are used for the Frame List current	
13:0	R/W	0	index. It means that each location of the frame list is accessed 8	
			times (frames or Micro-frames) before moving to the next index.	
			The following illustrates values of N based on the value of the	
			Frame List Size field in the USBCMD register.	

Offset	Offset: 0x001C		Register Name: FRINDEX		
Bit	Read/Write	Default/Hex	Description		
			USBCMD[Frame List Size]	Number Elements	Ν
			00b	1024	12
			01b	512	11
			10b	256	10
			11b	Reserved	

This register must be written as a DWord. Byte writes produce undefined results.

9.6.5.10 0x0024 EHCI Periodic Frame List Base Address Register (Default Value:0x0000_0000)

Offset:	Offset: 0x0024		Register Name: PERIODICLISTBASE	
Bit	Read/Write	Default/Hex	Description	
			Base Address	
			These bits correspond to memory address signals [31:12],	
			respectively.	
			This register contains the beginning address of the Periodic Frame	
			List in the system memory.	
31:12	R/W	0x0	System software loads this register prior to starting the schedule	
			execution by the Host Controller. The memory structure	
			referenced by this physical memory pointer is assumed to be 4	
			Kbyte aligned. The contents of this register are combined with the	
			Frame Index Register (FRINDEX) to enable the Host Controller to	
			step through the Periodic Frame List in sequence.	
11:0	1	1	/	

D NOTE

Writes must be Dword Writes.

9.6.5.11 0x0028 EHCI Current Asynchronous List Address Register (Default Value:0x0000_0000)

Offset	Offset: 0x0028		Register Name: ASYNCLISTADDR	
Bit	Read/Write	Default/Hex	Description	
			Link Pointer (LP)	
			This field contains the address of the next asynchronous queue	
31:5	R/W	0x0	head to be executed.	
			These bits correspond to memory address signals [31:5],	
			respectively.	
4:0	/	/	/	

9.6.5.12 0x0050 EHCI Configure Flag Register (Default Value:0x0000_0000)

Write n	nust be DWord	Writes.			
0x0050	EHCI Configure	e Flag Register	(Default V	'alue:0x0000_0000)	
Offset	Offset: 0x0050			Name: CONFIGFLAG	
Bit	Read/Write	Default/Hex	Description		
31:1	1	1	1		
0	R/W	0x0	Host sof configur	e Flag (CF) it ware sets this bit as the last action in its process of ing the Host Controller. This bit controls the default port- control logic as follow: Meaning Port routing control logic default-routs each port to an implementation dependent classic host controller.	
			1 The defa	Port routing control logic default-routs all ports to this host controller. ult value of this field is '0'.	

NOTE

This register is not used in the normal implementation.

9.6.5.13 0x0054 EHCI Port Status and Control Register (Default Value:0x0000_2000)

Offset:	0x0054		Register Name: PORTSC	
Bit	Read/Write	Default/Hex	Description	
31:22	/	/	/	
21	R/W	0x0	 Wake on Disconnect Enable (WKDSCNNT_E) Writing this bit to a one enables the port to be sensitive to device disconnects as wake-up events. This field is zero if Port Power is zero. The default value in this field is '0'. 	
20	R/W	0x0	Wake on Connect Enable (WKCNNT_E) Writing this bit to a one enable the port to be sensitive to device connects as wake-up events. This field is zero if Port Power is zero. The default value in this field is '0'.	
19:16	R/W	0x0	Port Test ControlThe value in this field specifies the test mode of the port. The encoding of the test mode bits are as follows:BitsTest Mode0000bThe port is NOT operating in a test mode.0001bTest J_STATE0010bTest K_STATE0011bTest SE0_NAK0100bTest Packet0101bTest FORCE_ENABLE0110b-1111bReservedThe default value in this field is '0000b'.	
15:14	1	1	/	
13	R/W	0x1	Port Owner This bit unconditionally goes to a 0b when the Configured bit in the CONFIGFLAG register makes a 0b to 1b transition. This bit unconditionally goes to 1b whenever the Configured bit is zero. System software uses this field to release ownership of the port to selected host controller (in the event that the attached device is not a high-speed device).Software writes a one to this bit when the attached device is not a high-speed device. A one in this bit means that a companion host controller owns and controls the port. Default Value = 1b.	

Offset:	0x0054		Register Nar	me: PORTSC	
Bit	Read/Write	Default/Hex	Description		
11:10	R	0x0	(bit10) signa USB devices only field is current conr The encodin Bit[11:10] 00b 10b 01b 11b	l lines. These b prior to port valid only wh nect status bit g of the bits ar USB State SEO J-state K-state Undefined	InterpretationNot Low-speed device, perform EHCI reset.Not Low-speed device, perform EHCI reset.Low-speed device, release ownership of port.Not Low-speed device, perform EHCI reset.
9			This value of this field is undefined if Port Power is zero.		
8	R/W	0x0	When softwa sequence as started. Soft reset sequer to ensure the Revision 2.0, Note: When a zero to the	are writes a or s defined in tware writes a nce. Software r e reset sequen completes. software write Port Enable b	
			delay before read as a zer high-speed r automaticall one). A host state of the p bit from a or attached de controller m	the bit status ro until after th mode after res y enable this controller mu port within 2 m ne to a zero. F evice is high-	writes a zero to this bit there may be a changes to a zero. The bit status will not he reset has completed. If the port is in set is complete, the host controller will port (e.g. set the Port Enable bit to a ist terminate the reset and stabilize the nilliseconds of software transitioning this or example: if the port detects that the -speed during reset, then the host port in the enabled state with 2ms of o a zero.

Offset	ffset: 0x0054		Register Name: PORTSC		
Bit	Read/Write	Default/Hex	Description		
			The HC Halted bit in the USBSTS register should be a zero before software attempts to use this bit. The host controller may hold Port Reset asserted to a one when the HC Halted bit is a one. This field is zero if Port Power is zero.		
			states as follows:	d bit of this register define the port	
			Bits[Port Enables, Suspend]	Port State	
			0x	Disable	
			10	Enable	
			11	Suspend	
7	R/W	0x0	blocked on this port, except f the end of the current transact when this bit was written to sensitive to resume detection change until the port is suspending suspending a port if there is a the USB. A write of zero to this bit is ign controller will unconditionally (1) Software sets the Force P (2) Software sets the Port Re If host software sets this b	ort Resume bit to a zero(from a one). set bit to a one(from a zero). bit to a one when the port is not is a zero), the results are undefined.	
6	R/W	0x0	Force Port Resume 1 = Resume detected/driven on port. 0 = No resume (K-state) detected/driven on port. Default value = 0. This functionality defined for manipulating this bit depends on the value of the Suspend bit. For example, if the port is not suspend and software transitions this bit to a one, then the effects on the bus are undefined. Software sets this bit to 1 to drive resume signaling. The Host Controller sets this bit to a 1 if a J-to-K transition is detected while the port is in the Suspend state. When this bit transitions to a one because a J-to-K transition is detected, the Port Change Detect bit in the USBSTS register is also set to a one. If software sets this bit		

Offset:	0x0054		Register Name: PORTSC	
Bit	Read/Write	Default/Hex	Description	
			to a one, the host controller must not set the Port Change Detect bit.	
			Note that when the EHCI controller owns the port, the resume sequence follows the defined sequence documented in the USB Specification Revision 2.0. The resume signaling (Full-speed 'K') is driven on the port as long as this remains a one. Software must appropriately time the Resume and set this bit to a zero when the appropriate amount of time has elapsed. Writing a zero (from one) causes the port to return high-speed mode (forcing the bus below the port into a high-speed idle). This bit will remain a one until the port has switched to high-speed idle. The host controller must complete this transition within 2 milliseconds of software setting this bit to a zero.	
			This field is zero if Port Power is zero.	
5	R/WC	0x0	Over-current Change This bit gets set to a one when there is a change to Over-current Active. Software clears this bit by writing a one to this bit position.	
4	R	0x0	Over-current Active 0 = This port does not have an over-current condition 1 = This port currently has an over-current condition This bit will automatically transition from a one to a zero when the over current condition is removed. The default value of this bit is '0'.	
3	R/WC	0x0	 Port Enable/Disable Change 1 = Port enabled/disabled status has changed 0 = No change For the root hub, this bit gets set to a one only when a port is disabled due to the appropriate conditions existing at the EOF2 point (See Chapter 11 of the USB Specification for the definition of a Port Error). Software clears this bit by writing a 1 to it. This field is zero if Port Power is zero. 	
2	R/W	0x0	Port Enabled/Disabled 1=Enable 0=Disable Ports can only be enabled by the host controller as a part of the reset and enable. Software cannot enable a port by writing a one to this field. The host controller will only set this bit to a one when the reset sequence determines that the attached device is a high- speed device.	

Bit	Read/Write	Default/Hex	DescriptionPorts can be disabled by either a fault condition(disconnect event or other fault condition) or by host software. Note that the bit status does not change until the port state actually changes. There may be a delay in disabling or enabling a port due to other host controller and bus events.When the port is disabled, downstream propagation of data is blocked on this port except for reset.
			or other fault condition) or by host software. Note that the bit status does not change until the port state actually changes. There may be a delay in disabling or enabling a port due to other host controller and bus events. When the port is disabled, downstream propagation of data is
			The default value of this field is '0'. This field is zero if Port Power is zero.
<u> </u>			
			Connect Status Change
			1=Change in Current Connect Status
			0=No change
			Indicates a change has occurred in the current connect status of
1	R/WC	0x0	the port. The host controller sets this bit for all changes to the port device connect status, even if system software has not cleared an
-		UNU	existing connect status change. For example, the insertion status
			changes twice before system software has cleared the changed
			condition, hub hardware will be "setting" an already-set bit.
			Software sets this bit to 0 by writing a 1 to it.
			This field is zero if Port Power is zero.
			Current Connect Status
			Device is present on port when the value of this field is a one, and
			no device is present on port when the value of this field is a zero.
0	R	0x0	This value reflects the current state of the port, and may not
			correspond directly to the event that caused the Connect Status
			Change(Bit 1) to be set.
			This field is zero if Port Power zero.

This register is only reset by hardware or in response to a host controller reset.

9.6.6 OHCI Register Description

9.6.6.1 0x0404 OHCI Control Register (Default Value: 0x0000_0000)

Offset:	0x0404	1		Register Name: HcRevision
D:1	Read/	Write	Defeult/Hey	Description
Bit	HCD	нс	Default/Hex	Description
31:11	/	/	/	1
				RemoteWakeupEnable
				This bit is used by HCD to enable or disable the remote wakeup
10	R/W	R	0x0	feature upon the detection of upstream resume signaling. When
10	.,	i.	UNU	this bit is set and the ResumeDetected bit in <i>HcInterruptStatus</i> is
				set, a remote wakeup is signaled to the host system. Setting this
				bit has no impact on the generation of hardware interrupt.
				RemoteWakeupConnected
				This bit indicates whether HC supports remote wakeup signaling. If
				remote wakeup is supported and used by the system, it is the
9	R/W	R/W	0x0	responsibility of system firmware to set this bit during POST. HC
				clear the bit upon a hardware reset but does not alter it upon a
				software reset. Remote wakeup signaling of the host system is
				host-bus-specific and is not described in this specification.
				InterruptRouting
				This bit determines the routing of interrupts generated by events
				registered in HcInterruptStatus. If clear, all interrupt are routed to
8	R/W	R	0x0	the normal host bus interrupt mechanism. If set interrupts are
	.,			routed to the System Management Interrupt. HCD clears this bit
		- 8		upon a hardware reset, but it does not alter this bit upon a
				software reset. HCD uses this bit as a tag to indicate the ownership
				of HC.
				HostControllerFunctionalState for USB
				00b USBReset
				01b USBResume
				10b USBOperational
				11b USBSuspend
				A transition to USBOperational from another state causes SOF
				generation to begin 1 ms later. HCD may determine whether HC
7:6	R/W	R/W	0x0	has begun sending SOFs by reading the StartoFrame field of
				HcInterruptStatus.
				This field may be changed by HC only when in the USBSUSPEND
				state. HC may move from the USBSUSPEND state to the
				USBRESUME state after detecting the resume signaling from a
				downstream port.
				HC enters USBSUSPEND after a software reset, whereas it enters
				USBRESET after a hardware reset. The latter also resets the Root

Offset:	0x0404			Register Name: HcRevision	
Bit	Read/Write		Defende /u.s.	Description	
DIL	HCD	нс	Default/Hex	Description	
				Hub and asserts subsequent reset signaling to downstream ports.	
5	R/W	R	0x0	BulkListEnable This bit is set to enable the processing of the Bulk list in the next Frame. If cleared by HCD, the processing of the Bulk list does not occur after the next SOF. HC checks this bit whenever it determines to process the list. When disabled, HCD may modify the list. If <i>HcBulkCurrentED</i> is pointing to an ED to be removed, HCD must advance the pointer by updating <i>HcBulkCurrentED</i> before re-enabling processing of the list.	
4	R/W	R	0x0	ControlListEnable This bit is set to enable the processing of the Control list in the next Frame. If cleared by HCD, the processing of the Control list does not occur after the next SOF. HC must check this bit whenever it determines to process the list. When disabled, HCD may modify the list. If <i>HcControlCurrentED</i> is pointing to an ED to be removed, HCD must advance the pointer by updating <i>HcControlCurrentED</i> before re-enabling processing of the list.	
З	R/W	R	0x0	IsochronousEnable This bit is used by HCD to enable/disable processing of isochronous EDs. While processing the periodic list in a Frame, HC checks the status of this bit when it finds an Isochronous ED (F=1). If set (enabled), HC continues processing the EDs. If cleared (disabled), HC halts processing of the periodic list (which now contains only isochronous EDs) and begins processing the Bulk/Control lists. Setting this bit is guaranteed to take effect in the next Frame (not the current Frame).	
2	R/W	R	0x0	PeriodicListEnable This bit is set to enable the processing of periodic list in the next Frame. If cleared by HCD, processing of the periodic list does not occur after the next SOF. HC must check this bit before it starts processing the list.	
1:0	R/W	R	0x0	ControlBulkServiceRatioThis specifies the service ratio between Control and Bulk EDs.Before processing any of the nonperiodic lists, HC must comparethe ratio specified with its internal count on how many nonemptyControl EDs have been processed, in determining whether tocontinue serving another Control ED or switching to Bulk EDs. Theinternal count will be retained when crossing the frame boundary.In case of reset, HCD is responsible for restoring this value.CBSRNo. of Control EDs Over Bulk EDs Served01:1	

Offset: 0x0404				Register N	lame: HcRevision	
Bit	Read/Write		Defeult/Hey	Description		
	HCD	нс	Default/Hex	Description		
				1	2:1	
				2	3:1	
				3	4:1	
				The defau	It value is 0x0.	

9.6.6.2 0x0408 OHCI Command Status Register (Default Value: 0x0000_0000)

Offset: 0x0408				Register Name: HcCommandStatus
Bit	Read/Write			
	HCD	НС	Default/Hex	Description
31:18	/	/	0x0	Reserved
				SchedulingOverrunCount
	R	R/W	0x0	These bits are incremented on each scheduling overrun error. It is
17:16				initialized to 00b and wraps around at 11b. This will be
17.10	IX.			incremented when a scheduling overrun is detected even if
				SchedulingOverrun in HcInterruptStatus has already been set.
				This is used by HCD to monitor any persistent scheduling problem.
15:4	1	/	1	
				OwershipChangeRequest
	R/W	R/W	0x0	This bit is set by an OS HCD to request a change of control of the
3				HC. When set HC will set the OwnershipChange field in
				HcInterruptStatus. After the changeover, this bit is cleared and
				remains so until the next request from OS HCD.
				BulklListFilled
				This bit is used to indicate whether there are any TDs on the Bulk
				list. It is set by HCD whenever it adds a TD to an ED in the Bulk list.
				When HC begins to process the head of the Bulk list, it checks BLF.
				As long as BulkListFilled is 0, HC will not start processing the Bulk
2	R/W	R/W	0x0	list. If BulkListFilled is 1, HC will start processing the Bulk list and
				will set BF to 0. If HC finds a TD on the list, then HC will set
				BulkListFilled to 1 causing the Bulk list processing to continue. If
				no TD is found on the Bulk list, and if HCD does not set
				BulkListFilled, then BulkListFilled will still be 0 when HC
				completes processing the Bulk list and Bulk list processing will
				stop.
	DAA	D (M)		ControlListFilled
				This bit is used to indicate whether there are any TDs on the
1	R/W	R/W	0x0	Control list. It is set by HCD whenever it adds a TD to an ED in the
				Control list.
				When HC begins to process the head of the Control list, it checks

Offset	Offset: 0x0408			Register Name: HcCommandStatus
D:4	Read/	Write	Defeult/Hau	Description
Bit	HCD	НС	Default/Hex	Description
				CLF. As long as ControlListFilled is 0, HC will not start processing the Control list. If CF is 1, HC will start processing the Control list and will set ControlListFilled to 0. If HC finds a TD on the list, then HC will set ControlListFilled to 1 causing the Control list processing to continue. If no TD is found on the Control list, and if the HCD does not set ControlListFilled , then ControlListFilled will still be 0 when HC completes processing the Control list and Control list processing will stop.
0	R/W	R/E	0x0	HostControllerReset This bit is by HCD to initiate a software reset of HC. Regardless of the functional state of HC, it moves to the USBSuspend state in which most of the operational registers are reset except those stated otherwise; e.g, the InteruptRouting field of HcControl, and no Host bus accesses are allowed. This bit is cleared by HC upon the completion of the reset operation. The reset operation must be completed within 10 ms. This bit, when set, should not cause a reset to the Root Hub and no subsequent reset signaling should be asserted to its downstream ports.

9.6.6.3 0x040C OHCI Interrupt Status Register (Default Value: 0x0000_0000)

_

		_		
Offset:	: 0x0400	2		Register Name: HcInterruptStatus
	Read/	Write	D (), (), ()	
Bit	HCD	HC	Default/Hex	Description
31:7	/	1	/	/
				RootHubStatusChange
6	R/W	R/W	0x0	This bit is set when the content of HcRhStatus or the content of
				any of <i>HcRhPortStatus</i> [NumberofDownstreamPort] has changed.
		R/W	0x0	FrameNumberOverflow
F				This bit is set when the MSb of HcFmNumber (bit 15) changes
5	R/W			value, from 0 to 1 or from 1 to 0, and after <i>HccaFrameNumber</i> has
				been updated.
				UnrecoverableError
				This bit is set when HC detects a system error not related to USB.
4	R/W	R/W	0x0	HC should not proceed with any processing nor signaling before
				the system error has been corrected. HCD clears this bit after HC
				has been reset.
				ResumeDetected
3	R/W	R/W	0x0	This bit is set when HC detects that a device on the USB is asserting
				resume signaling. It is the transition from no resume signaling to

Offse	Offset: 0x040C			Register Name: HcInterruptStatus
D:+	Read/	Write	Defeult/Hey	Description
Bit	HCD	нс	Default/Hex	Description
				resume signaling causing this bit to be set. This bit is not set when
				HCD sets the USBRseume state.
				StartofFrame
2			0.40	This bit is set by HC at each start of frame and after the update of
2	R/W	R/W	0x0	HccaFrameNumber. HC also generates a SOF token at the same
				time.
				WritebackDoneHead
				This bit is set immediately after HC has written HcDoneHead to
1	R/W	R/W	0x0	HccaDoneHead. Further updates of the HccaDoneHead will not
				occur until this bit has been cleared. HCD should only clear this bit
				after it has saved the content of HccaDoneHead.
				SchedulingOverrun
				This bit is set when the USB schedule for the current Frame
0	R/W	R/W	0x0	overruns and after the update of HccaFrameNumber. A
				scheduling overrun will also cause the SchedulingOverrunCount
				of HcCommandStatus to be incremented.

9.6.6.4 0x0410 OHCI Interrupt Enable Register (Default Value: 0x0000_0000)

-

Offset	Offset: 0x0410			Regist	ter Name: HcInterruptEnable Register
	Read/Write			_	
Bit	HCD	НС	Default/Hex	Descr	iption
				Maste	erInterruptEnable
31	R/W	R	0x0	A '0' v	vrittern to this field is ignored by HC. A '1' written to this field
21	N/ VV	n -	0.0	enabl	es interrupt generation due to events specified in the other
				bits of	f this register. This is used by HCD as Master Interrupt Enable.
30:7	/	/	1	/	
			RootH	lubStatusChange Interrupt Enable	
		R	0x0	0	Ignore;
6	R/W			1	Enable interrupt generation due to Root Hub Status
					Change;
			0x0	Frame	eNumberOverflow Interrupt Enable
	D /14/			0	Ignore;
5	R/W	R		1	Enable interrupt generation due to Frame Number Over
					Flow;
			0x0	Unred	coverableError Interrupt Enable
4	R/W	R		0	Ignore;
				1	Enable interrupt generation due to Unrecoverable Error;
3	R/W	R	0x0	Resur	neDetected Interrupt Enable

Offset	Offset: 0x0410			Regist	ter Name: HcInterruptEnable Register
Bit	Read/	Write	Default/Hoy	Decer	intion
ы	HCD	нс	Default/Hex	Descr	iption
			0	Ignore;	
				1	Enable interrupt generation due to Resume Detected;
			0x0	Starto	ofFrame Interrupt Enable
2	R/W	R		0	Ignore;
				1	Enable interrupt generation due to Start of Flame;
		R	0x0	Write	backDoneHead Interrupt Enable
1	R/W			0	lgnore;
				1	Enable interrupt generation due to Write back Done Head;
		R	0x0	Scheo	lulingOverrun Interrupt Enable
0	R/W			0	Ignore;
				1	Enable interrupt generation due to Scheduling Overrun;

9.6.6.5 0x0414 OHCI Interrupt Disable Register (Default Value: 0x0000_0000)

				1	Enable interrupt generation due to Scheduling Overrun;
			Disable Regist	-	ault Value: 0x0000_0000)
Offse	t: 0x041		1	Regis	ter Name: HcInterruptDisable Register
Bit	Read/	1	Default/Hex	Descr	iption
-	HCD	HC			
31	R/W	R	0x0	A wri disab	erInterruptEnable tten '0' to this field is ignored by HC. A '1' written to this field les interrupt generation due events specified in the other bits s register. This field is set after a hardware or software reset.
30:7	/	/	1	1 1	
			0x0	Rootl	HubStatusChange Interrupt Disable
6	R/W	R		0	Ignore;
				1	Disable interrupt generation due to Root Hub Status Change;
				Fram	eNumberOverflow Interrupt Disable
_				0	Ignore;
5	R/W	R	0x0	1	Disable interrupt generation due to Frame Number Over Flow;
				Linro	coverableError Interrupt Disable
4	R/W	R	0x0	0	Ignore;
-		IX.	0.00	1	Disable interrupt generation due to Unrecoverable Error;
					meDetected Interrupt Disable
3 R/W	R/W	R	0x0	0	Ignore;
				1	Disable interrupt generation due to Resume Detected;
				Starte	ofFrame Interrupt Disable
2	R/W	R	0x0	0	Ignore;
				1	Disable interrupt generation due to Start of Flame;

Offset	Offset: 0x0414			Regist	ter Name: HcInterruptDisable Register		
D:+	Read/	Write	Default/Hov	Decer	intion		
Bit	HCD	нс	Default/Hex	Descr	Description		
			0x0	Write	backDoneHead Interrupt Disable		
1	R/W	R		0	Ignore;		
1				1	Disable interrupt generation due to Write back Done		
					Head;		
		R	0x0	Sched	lulingOverrun Interrupt Disable		
0	R/w			0	Ignore;		
				1	Disable interrupt generation due to Scheduling Overrun;		

9.6.6.6 0x0418 OHCI HCCA Register (Default Value: 0x0000_0000)

Offset	: 0x0418	3		Register Name: HcHCCA
Bit	Read/	Write	Defeult/Hey	Description
ыт	HCD	нс	Default/Hex	Description
				HCCA[31:8]
				This is the base address of the Host Controller Communication
31:8	R/W	R	0x0	Area. This area is used to hold the control structures and the
				Interrupt table that are accessed by both the Host Controller and
				the Host Controller Driver.
				HCCA[7:0]
		_		The alignment restriction in HcHCCA register is evaluated by
7:0	R	R	0x0	examining the number of zeros in the lower order bits. The
				minimum alignment is 256 bytes, therefore, bits 0 through 7 must
				always return 0 when read.

9.6.6.7 0x041C OHCI Period Current ED Register (Default Value: 0x0000_0000)

		_		
Offset	Offset: 0x041C			Register Name: HcPeriodCurrentED[PCED]
Bit	Read/	Write	Default/Hoy	Description
DIL	HCD	нс	Default/Hex	Description
				PCED[31:4]
			0x0	This is used by HC to point to the head of one of the Periodec list
31:4	R	R/W		which will be processed in the current Frame. The content of this
51.4	n			register is updated by HC after a periodic ED has been processed.
				HCD may read the content in determining which ED is currently
				being processed at the time of reading.
				PCED[3:0]
3:0	R	R	0x0	Because the general TD length is 16 bytes, the memory structure
5.0	n	n	UXU	for the TD must be aligned to a 16-byte boundary. So the lower
				bits in the PCED, through bit 0 to bit 3 must be zero in this field.

9.6.6.8 0x0420 OHCI Control Head ED Register (Default Value: 0x0000_0000)

Offset	: 0x0420)		Register Name: HcControlHeadED[CHED]		
D:+	Read/	Write		Description		
Bit	HCD	нс	Default/Hex	Description		
				EHCD[31:4]		
				The HcControlHeadED register contains the physical address of		
31:4	R/W	R	0x0	the first Endpoint Descriptor of the Control list. HC traverse the		
				Control list starting with the HcControlHeadED pointer. The		
				content is loaded from HCCA during the initialization of HC.		
			0x0	EHCD[3:0]		
3:0	R	R		Because the general TD length is 16 bytes, the memory structure		
5.0	n			for the TD must be aligned to a 16-byte boundary. So the lower		
				bits in the PCED, through bit 0 to bit 3 must be zero in this field.		
0x0424	x0424 OHCI Control Current ED Register (Default Value: 0x0000_0000)					

9.6.6.9 0x0424 OHCI Control Current ED Register (Default Value: 0x0000_0000)

Offset	: 0x0424			Register Name: HcControlCurrentED[CCED]
D:4	Read/	Write	Default/Hay	Description
Bit	HCD	нс	Default/Hex	Description
				CCED[31:4]
		- 1		The pointer is advanced to the next ED after serving the present
				one. HC will continue processing the list from where it left off in
				the last Frame. When it reaches the end of the Control list, HC
				checks the ControlListFilled of in HcCommandStatus. If set, it
31:4	R/W	R/W	0x0	copies the content of HcControlHeadED to HcControlCurrentED
				and clears the bit. If not set, it does nothing.
				HCD is allowed to modify this register only when the
				ControlListEnable of HcControl is cleared. When set, HCD only
				reads the instantaneous value of this register. Initially, this is set
				to zero to indicate the end of the Control list.
				CCED[3:0]
3:0	R	R	0x0	Because the general TD length is 16 bytes, the memory structure
5.0	N	n	0.0	for the TD must be aligned to a 16-byte boundary. So the lower
				bits in the PCED, through bit 0 to bit 3 must be zero in this field.

9.6.6.10 0x0428 OHCI Bulk Head ED Register (Default Value: 0x0000_0000)

Offset	Offset: 0x0428			Register Name: HcBulkHeadED[BHED]
Bit	Read/\	Nrite	Defeult/Hey	Description
ы	HCD	нс	Default/Hex	Description
				BHED[31:4]
			0x0	The HcBulkHeadED register contains the physical address of the
31:4	R/W	R		first Endpoint Descriptor of the Bulk list. HC traverses the Bulk list
				starting with the HcBulkHeadED pointer. The content is loaded
				from HCCA during the initialization of HC.
		R	0x0	BHED[3:0]
3:0	R			Because the general TD length is 16 bytes, the memory structure
3.0	n			for the TD must be aligned to a 16-byte boundary. So the lower
				bits in the PCED, through bit 0 to bit 3 must be zero in this field.

9.6.6.11 0x042C OHCI Bulk Current ED Register (Default Value: 0x0000_0000)

0x042C	x042C OHCI Bulk Current ED Register (Default Value: 0x0000_0000)							
Offset: 0x042C				Register Name: HcBulkCurrentED[BCED]				
Bit	Read/	Write	Defeult/Hey	Description				
ы	HCD	нс	Default/Hex	Description				
			4	BulkCurrentED[31:4]				
			0x0	This is advanced to the next ED after the HC has served the present				
		R/W		one. HC continues processing the list from where it left off in the				
	R/W			last Frame. When it reaches the end of the Bulk list, HC checks the				
31:4				ControlListFilled of HcControl. If set, it copies the content of				
51.4	r, vv			HcBulkHeadED to HcBulkCurrentED and clears the bit. If it is not				
				set, it does nothing. HCD is only allowed to modify this register				
				when the BulkListEnable of HcControl is cleared. When set, the				
				HCD only reads the instantaneous value of this register. This is				
				initially set to zero to indicate the end of the Bulk list.				
				BulkCurrentED [3:0]				
3:0	R	R	0x0	Because the general TD length is 16 bytes, the memory structure				
5.0	n	n.	UXU	for the TD must be aligned to a 16-byte boundary. So the lower				
				bits in the PCED, through bit 0 to bit 3 must be zero in this field.				

9.6.6.12 0x0430 OHCI Done Head Register (Default Value: 0x0000_0000)

Offset	Offset: 0x0430			Register Name: HcDoneHead	
D:+	Read/Write		Default/Hay		
Bit	HCD	нс	Default/Hex	Description	
31:4		R/W	0.0	HcDoneHead[31:4]	
51.4	1:4 R R/		0x0	When a TD is completed, HC writes the content of <i>HcDoneHead</i> to	

Offset	Offset: 0x0430			Register Name: HcDoneHead	
D:4	Read/	Write	Defeult/Hey	Description	
Bit	HCD	нс	Default/Hex	Description	
				the NextTD field of the TD. HC then overwrites the content of	
				<i>HcDoneHead</i> with the address of this TD. This is set to zero whenever HC writes the content of this register to HCCA. It also	
				sets the WritebackDoneHead of HcInterruptStatus.	
				HcDoneHead[3:0]	
3:0	R	R	0x0	Because the general TD length is 16 bytes, the memory structure	
5.0	n	n		for the TD must be aligned to a 16-byte boundary. So the lower	
				bits in the PCED, through bit 0 to bit 3 must be zero in this field.	

9.6.6.13 0x0434 OHCI Frame Interval Register (Default Value: 0x0000_2EDF)

Offset:	0x0434	ļ		Register Name: HcFmInterval Register
D:+	Read/	Write	Default/Hau	Description
Bit	HCD	нс	Default/Hex	Description
				FrameIntervalToggler
31	R/W	R	0x0	HCD toggles this bit whenever it loads a new value to
				FrameInterval.
				FSLargestDataPacket
				This field specifies a value which is loaded into the Largest Data
	· · · ·			Packet Counter at the beginning of each frame. The counter value
30:16	R/W	R	0x0	represents the largest amount of data in bits which can be sent or
				received by the HC in a single transaction at any given time
				without causing scheduling overrun. The field value is calculated
				by the HCD.
15:14	/	/	1	/
				FrameInterval
				This specifies the interval between two consecutive SOFs in bit
				times. The nominal value is set to be 11,999. HCD should store the
13:0	R/W	R	0x2edf	current value of this field before resetting HC. By setting the
10.0	.,		UNLEGI	HostControllerReset field of <i>HcCommandStatus</i> as this will cause
				the HC to reset this field to its nominal value. HCD may choose to
				restore the stored value upon the completion of the Reset
				sequence.

9.6.6.14 0x0438 OHCI Frame Remaining Register (Default Value: 0x0000_0000)

Offset:	0x0438	3		Register Name: HcFmRemaining	
D:+	Read/	'Write	Defeult/Hey	Description	
Bit	HCD	HC	Default/Hex	Description	
31	R	R/W	0x0	FrameRemaining Toggle This bit is loaded from the FrameIntervalToggle field of <i>HcFmInterval</i> whenever FrameRemaining reaches 0. This bit is used by HCD for the synchronization between FrameInterval and FrameRemaining .	
30:14	/	/	1	/	
13:0	R	RW	0x0	/ FramRemaining This counter is decremented at each bit time. When it reaches zero, it is reset by loading the FrameInterval value specified in <i>HcFmInterval</i> at the next bit time boundary. When entering the USBOPERATIONAL state, HC re-loads the content with the FrameInterval of <i>HcFmInterval</i> and uses the updated value from the next SOF.	

9.6.6.15 0x043C OHCI Frame Number Register (Default Value: 0x0000_0000)

Offset:	0x0430	2		Register Name: HcFmNumber		
Bit	Read/Write		Default/Hex	Description		
ыт	HCD	нс	Default/Hex	Description		
31:16	/	/	1	/		
15:0	R	R/W	0x0	FrameNumber This is incremented when <i>HcFmRemaining</i> is re-loaded. It will be rolled over to 0x0 after 0x0ffff. When entering the USBOPERATIONAL state, this will be incremented automatically. The content will be written to HCCA after HC has incremented the FrameNumber at each frame boundary and sent a SOF but before HC reads the first ED in that Frame. After writing to HCCA, HC will set the StartofFrame in <i>HcInterruptStatus</i> .		

-

9.6.6.16 0x0440 OHCI Periodic Start Register (Default Value: 0x0000_0000)

Offset:	0x0440)		Register Name: HcPeriodicStatus
D:+	Read/Write		Defeult/Hau	Description
Bit	HCD	нс	Default/Hex	Description
31:14	/	/	/	/
13:0	R/W	R	0x0	PeriodicStart After a hardware reset, this field is cleared. This is then set by HCD

Offset:	0x0440	כ		Register Name: HcPeriodicStatus
D:4	Read/	'Write	Defeult/Hey	Description
Bit	HCD	нс	Default/Hex	Description
				during the HC initialization. The value is calculated roughly as 10%
				off from <i>HcFmInterval</i> . A typical value will be 0x2A3F (or 0x3e67).
				When HcFmRemaining reaches the value specified, processing of
				the periodic lists will have priority over Control/Bulk processing.
				HC will therefore start processing the Interrupt list after
				completing the current Control or Bulk transaction that is in
				progress.

9.6.6.17 0x0444 OHCI LS Threshold Register (Default Value: 0x0000_0628)

Offset:	0x0444	L .		Register Name: HcLSThreshold
D:4	Read/Write		Defeult/Hey	Description
Bit	HCD HC		Default/Hex	Description
31:12	/	/	/	/
		R	0x0628	LSThreshold
				This field contains a value which is compared to the
11:0	R/W			FrameRemaining field prior to initiating a Low Speed transaction.
11.0				The transaction is started only if FrameRemaining this field. The
				value is calculated by HCD with the consideration of transmission
				and setup overhead.

9.6.6.18 0x0448 OHCI Root Hub DescriptorA Register (Default Value: 0x0200_1201)

Offset:	0x0448			Register Name: HcRhDescriptorA			
Bit	Read/	Write	D (), (), ()	Description			
DIL	HCD	нс	Default/Hex	Description			
				PowerOnToPowerGoodTime[POTPGT]			
				This byte specifies the duration HCD has to wait before accessing			
31:24	R/W	R	0x2	a powered-on port of the Root Hub. It is implementation-specific.			
				The unit of time is 2 ms. The duration is calculated as POTPGT *			
				2ms.			
23:13	/	/	/	/			
				NoOverCurrentProtection			
				This bit describes how the overcurrent status for the Root Hub			
				ports are reported. When this bit is cleared, the			
12	R/W	R	0x1	OverCurrentProtectionMode field specifies global or per-port			
				reporting.			
				0 Over-current status is reported collectively for all			
				downstream ports.			

Offset:	Offset: 0x0448			Register Name: HcRhDescriptorA		
	Read/	Write		2 · · · ·		
Bit	HCD	HC	Default/Hex	Description		
				1 No overcurrent protection supported.		
11	R/W	R	0x0	OverCurrentProtectionMode This bit describes how the overcurrent status for the Root Hub ports are reported. At reset, these fields should reflect the same mode as PowerSwitchingMode. This field is valid only if the NoOverCurrentProtection field is cleared. 0 Over-current status is reported collectively for all downstream ports. 1 Over-current status is reported on per-port basis.		
10	R	R	0x0	Device Type This bit specifies that the Root Hub is not a compound device. The Root Hub is not permitted to be a compound device. This field should always read/write 0.		
9	R/W	R	0x1	 PowerSwitchingMode This bit is used to specify how the power switching of the Root Hub ports is controlled. It is implementation-specific. This field is only valid if the NoPowerSwitching field is cleared. 0 All ports are powered at the same time. 1 Each port is powered individually. This mode allows port power to be controlled by either the global switch or perport switching. If the PortPowerControlMask bit is set, the port responds only to port power commands (Set/ClearPortPower). If the port mask is cleared, then the port is controlled only by the global power switch (Set/ClearGlobalPower). 		
8	R/W	R	0x0	NoPowerSwithcingThese bits are used to specify whether power switching issupported or ports are always powered. It is implementation-specific. When this bit is cleared, the PowerSwitchingModespecifies global or per-port switching.0Ports are power switched.1Ports are always powered on when the HC is powered on.		
7:0	R	R	0x01	NumberDownstreamPorts These bits specify the number of downstream ports supported by the Root Hub. It is implementation-specific. The minimum number of ports is 1. The maximum number of ports supported.		

9.6.6.19 0x044C HcRhDescriptorB Register (Default Value: 0x0000_0000)

Offset:	Offset: 0x044C			Register	Name: HcRhDescriptorB Register	
Bit	Read/	Write	Default/Hex	Descript	lion	
ΒΙ	HCD	нс	Default/ Hex	Description		
				PortPowerControlMask		
				Each bit	indicates if a port is affected by a global power control	
				commar	nd when PowerSwitchingMode is set. When set, the	
				• •	ower state is only affected by per-port power control	
					arPortPower). When cleared, the port is controlled by the	
				•	power switch (Set/ClearGlobalPower). If the device is	
31:16	R/W	R	0x0	configur	red to global switching mode (PowerSwitchingMode = 0),	
				this field	l is not valid.	
				Bit0	Reserved	
				Bit1	Ganged-power mask on Port #1.	
				Bit2	Ganged-power mask on Port #2.	
				Bit15	Ganged-power mask on Port #15.	
				DeviceR	emovable	
				Each bit	is dedicated to a port of the Root Hub. When cleared, the	
				attached	d device is removable. When set, the attached device is	
				not rem	ovable.	
15:0	R/W	R	0x0	Bit0	Reserved	
		- 8		Bit1	Device attached to Port #1.	
				Bit2	Device attached to Port #2.	
				/		
				Bit15	Device attached to Port #15.	

9.6.6.20 0x0450 HcRhStatus Register (Default Value: 0x0000_0000)

Offset:	Offset: 0x0450			Register Name: HcRhStatus Register
Bit	Read/Write		Default/Hay	Description
DIL	HCD	нс	Default/Hex	Description
				(write)ClearRemoteWakeupEnable
31	W	R	0x0	Write a '1' clears DeviceRemoteWakeupEnable. Writing a '0' has
				no effect.
30:18	/	/	/	/
				OverCurrentIndicatorChang
17	R/W	R	0x0	This bit is set by hardware when a change has occurred to the
17	K/ VV			OverCurrentIndicator field of this register. The HCD clears this bit
				by writing a '1'. Writing a '0' has no effect.
16	R/W	R	0x0	(read)LocalPowerStartusChange

Offset:	0x0450	1		Register Name: HcRhStatus Register
D ¹	Read/	Write	Defeate/Harr	Description
Bit	HCD	нс	Default/Hex	Description
				The Root Hub does not support the local power status features, thus, this bit is always read as '0'. (write)SetGlobalPower In global power mode (PowerSwitchingMode=0), This bit is written to '1' to turn on power to all ports (clear PortPowerStatus). In per-port power mode, it sets PortPowerStatus only on ports whose PortPowerControlMask bit
				is not set. Writing a '0' has no effect.
15	R/W	R	0x0	(read)DeviceRemoteWakeupEnable This bit enables a ConnectStatusChange bit as a resume event, causing a USBSUSPEND to USBRESUME state transition and setting the ResumeDetected interrupt. 0 ConnectStatusChange is not a remote wakeup event. 1 ConnectStatusChange is a remote wakeup event. (write)SetRemoteWakeupEnable Writing a '1' sets DeviceRemoveWakeupEnable. Writing a '0' has no effect.
14:2	1	1	1	
1	R	R/W	0x0	OverCurrentIndicator This bit reports overcurrent conditions when the global reporting is implemented. When set, an overcurrent condition exists. When cleared, all power operations are normal. If per-port overcurrent protection is implemented this bit is always '0'
0	R/W	R	0x0	 (Read)LocalPowerStatus When read, this bit returns the LocalPowerStatus of the Root Hub. The Root Hub does not support the local power status feature; thus, this bit is always read as '0'. (Write)ClearGlobalPower When write, this bit is operated as the ClearGlobalPower. In global power mode (PowerSwitchingMode=0), This bit is written to '1' to turn off power to all ports (clear PortPowerStatus). In per-port
				power mode, it clears PortPowerStatus only on ports whose PortPowerControlMask bit is not set. Writing a '0' has no effect.

9.6.6.21 0x0454 HcRhPortStatus Register (Default Value: 0x0000_0100)

Unset:	Offset: 0x0454			Register Name: HcRhPortStatus
D'1	Read/	Write	Default/Har	Description
Bit	HCD	НС	Default/Hex	Description
31:21	/	/	/	/
				PortResetStatusChange
				This bit is set at the end of the 10-ms port reset signal. The HCD
20	R/W	R/W	0x0	writes a '1' to clear this bit. Writing a '0' has no effect.
				0 port reset is not complete
				1 port reset is complete
				PortOverCurrentIndicatorChange
				This bit is valid only if overcurrent conditions are reported on a
				per-port basis. This bit is set when Root Hub changes the
19	R/W	R/W	0x0	PortOverCurrentIndicator bit. The HCD writes a '1' to clear this
				bit. Writing a '0' has no effect.
				0 no change in PortOverCurrentIndicator
				1 PortOverCurrentIndicator has changed
				PortSuspendStatusChange
				This bit is set when the full resume sequence has been completed.
			W 0x0	This sequence includes the 20-s resume pulse, LS EOP, and 3-ms
10	DAM	D (14)		resychronization delay. The HCD writes a '1' to clear this bit.
18	R/W	R/W		Writing a '0' has no effect. This bit is also cleared when
	×			ResetStatusChange is set.
				0 resume is not completed
				1 resume completed
				PortEnableStatusChange
				This bit is set when hardware events cause the PortEnableStatus
17	5 / 1 /	5 (14)		bit to be cleared. Changes from HCD writes do not set this bit. The
17	R/W	R/W	0x0	HCD writes a '1' to clear this bit. Writing a '0' has no effect.
				0 no change in PortEnableStatus
				1 change in PortEnableStatus
				ConnectStatusChange
				This bit is set whenever a connect or disconnect event occurs. The
				HCD writes a '1' to clear this bit. Writing a '0' has no effect. If
				CurrentConnectStatus is cleared when a
				SetPortReset,SetPortEnable, or SetPortSuspend write occurs,
16	-	5 / · · ·		this bit is set to force the driver to re-evaluate the connection
	R/W	R/W	0x0	status since these writes should not occur if the port is
				disconnected.
				0 no change in PortEnableStatus
				1 change in PortEnableStatus
				Note: If the DeviceRemovable[NDP] bit is set, this bit is set only

Offset:	t: 0x0454			Register Name: HcRhPortStatus
Bit	Read/	Write	Default/Hex	Description
ы	HCD	нс	Default/ Hex	
				after a Root Hub reset to inform the system that the device is attached.
15:10	/	/	/	/
9	R/W	R/W	0x0	(read)LowSpeedDeviceAttached This bit indicates the speed of the device attached to this port. When set, a Low Speed device is attached to this port. When clear, a Full Speed device is attached to this port. This field is valid only when the CurrentConnectStatus is set. 0 full speed device attached 1 low speed device attached (write)ClearPortPower The HCD clears the PortPowerStatus bit by writing a '1' to this bit. Writing a '0' has no effect.
8	R/W	R/W	0x1	(read)PortPowerStatus This bit reflects the port's power status, regardless of the type of power switching implemented. This bit is cleared if an overcurrent condition is detected. HCD sets this bit by writing SetPortPower or SetGlobalPower. HCD clears this bit by writing ClearPortPower or ClearGlobalPower. Which power control switches are enabled is determined by PowerSwitchingMode and PortPortControlMask[NumberDownstreamPort]. In global switching mode(PowerSwitchingMode=0), only Set/ClearGlobalPower controls this bit. In per-port power switching (PowerSwitchingMode=1), if the PortPowerControlMask[NDP] bit for the port is set, only Set/ClearPortPower commands are enabled. If the mask is not set, only Set/ClearGlobalPower commands are enabled. When port power is disabled, CurrentConnectStatus, PortEnableStatus, PortSuspendStatus, and PortResetStatus should be reset. 0 port power is on (write)SetPortPower The HCD writes a '1' to set the PortPowerStatus bit. Writing a '0' has no effect. Note: This bit is always reads '1b' if power switching is not
				supported.
7:5	/	/	/	/
4	R/W	R/W	0x0	(read)PortResetStatus

Offset:	et: 0x0454			Register Name: HcRhPortStatus
Bit	Read/	Write	Default/Hex	Description
ы	HCD	HC	Delaulynex	
				When this bit is set by a write to SetPortReset, port reset signalingis asserted. When reset is completed, this bit is cleared whenPortResetStatusChange is set. This bit cannot be set ifCurrentConnectStatus is cleared.0port reset signal is not active1port reset signal is not active1port reset signal is active(write)SetPortResetThe HCD sets the port reset signaling by writing a '1' to this bit.Writing a '0' has no effect. If CurrentConnectStatus is cleared, thiswrite does not set PortResetStatus, but instead setsConnectStatusChange. This informs the driver that it attempted
				to reset a disconnected port.
3	R/W	R/W	0×0	(read) PortOverCurrentIndicator This bit is only valid when the Root Hub is configured in such a way that overcurrent conditions are reported on a per-port basis. If per-port overcurrent reporting is not supported, this bit is set to 0. If cleared, all power operations are normal for this port. If set, an overcurrent condition exists on this port. This bit always reflects the overcurrent input signal. 0 no overcurrent condition. 1 overcurrent condition detected. (write) ClearSuspendStatus The HCD writes a '1' to initiate a resume. Writing a '0' has no effect. A resume is initiated only if PortSuspendStatus is set.
				 (read)PortSuspendStatus This bit indicates the port is suspended or in the resume sequence. It is set by a SetSuspendState write and cleared when PortSuspendStatusChange is set at the end of the resume
2	R/W	R/W	0x0	interval. This bit cannot be set if CurrentConnectStatus is cleared.This bit is also cleared when PortResetStatusChange is set at theend of the port reset or when the HC is placed in the USBRESUMEstate. If an upstream resume is in progress, it should propagate tothe HC.0port is not suspended
				1port is suspended(write)SetPortSuspendThe HCD sets the PortSuspendStatus bit by writing a '1' to this bit.Writing a '0' has no effect. If CurrentConnectStatus is cleared, this

Offset:	0x0454	•		Register Name: HcRhPortStatus
÷	Read/	Write		
Bit	HCD	нс	Default/Hex	Description
				write does not set PortSuspendStatus ; instead it sets ConnectStatusChange . This informs the driver that it attempted to suspend a disconnected port.
				(read)PortEnableStatus
				This bit indicates whether the port is enabled or disabled. The Root Hub may clear this bit when an overcurrent condition, disconnect event, switched-off power, or operational bus error
				such as babble is detected. This change also causes
				PortEnabledStatusChange to be set. HCD sets this bit by writing
				SetPortEnable and clears it by writing ClearPortEnable. This bit
				cannot be set when CurrentConnectStatus is cleared. This bit is
				also set, if not already, at the completion of a port reset when
1	R/W	R/W	0x0	ResetStatusChange is set or port suspend when
-			0.00	SuspendStatusChange is set.
				0 port is disabled
				1 port is enabled
				(write)SetPortEnable
				The HCD sets PortEnableStatus by writing a '1'. Writing a '0' has
				no effect. If CurrentConnectStatus is cleared, this write does not
	· · · ·			set PortEnableStatus, but instead sets ConnectStatusChange.
				This informs the driver that it attempted to enable a disconnected Port.
				(read)CurrentConnectStatus
				This bit reflects the current state of the downstream port.
				0 No device connected
				1 Device connected
0	R/W	R/W	0x0	(write)ClearPortEnable
				The HCD writes a '1' to clear the PortEnableStatus bit. Writing '0'
				to this bit has no effect. The CurrentConnectStatus is not affected
				by any write.
				Note: This bit is always read '1' when the attached device is
				nonremovalble (DviceRemoveable[NumberDownstreamPort]).

9.6.6.22 0x0800 HCI Interface Register (Default Value: 0x1000_0000)

Offset: 0	x0800		Register Name: USB_CTRL
Bit	Read/Write Default/Hex		Description
31:29	/	/	Reserved

Bit Read/Write Default/Hex Description 28 R 1 DMA Transfer Status Enable 0: Disable 27:26 / / / // 25 R/W 0 DHA Transfer Status Enable 0: Disable 25 R/W 0 DHA Transfer Status Enable 0: Disable 24:19 / / OHCI count select 1: Simulation mode. The counters will be much shorter then real time 24:19 / / / / 18 R/W 0 1: Within 2 us of the resume-K to SE0 transition 0: Random time value of the resume-K to SE0 transition 0: Random time value of the resume-K to SE0 transition 17:13 / / / 12 R/W 0 TULPI wrapper interface will automatically set or clear DrvVbus register in ULPI PHY according to the port power status form the root hub 11 R/W 0 ULPI wrapper will ignore the difference between power status form the root hub and ULPI PHY 11 R/W 0 1: ULPI wrapper ville physic NCR 4 enable 1: USE INCR16, use other enabled INCRX or	Offset: 0	(0800		Register Name: USB_CTRL
28 R 1 0: Disable 27:26 / / / 25 R/W 0 OHCI count select 1: Simulation mode. The counters will be much shorter then real time 0: Normal mode. The counters will count full time 24:19 / / / 18 R/W 0 0: Random time value of the resume-K to SE0 transition 07:13 / / / 17:13 / / / 12 R/W 0 0: ULPI wrapper interface will automatically set or clear DrvVbus register in ULPI PHY according to the port power status form the root hub 12 R/W 0 0: ULPI wrapper will ignore the difference between power status of root hub and ULPI PHY 11 R/W 0 0: Do not use INCR16 when appropriate 10 R/W 0 0: Do not use INCR8, use other enabled INCRX or unspecified length burst INCR 10 R/W 0 0: Do not use INCR8, use other enabled INCRX or unspecified length burst INCR 9 R/W 0 0: Do not use INCR8, use other enabled INCRX or unspecified length burst INCR 8 R/W 0 0: Do not use INCR4, use other enabled INCRX or unspecif	Bit	Read/Write	Default/Hex	Description
27:26 / / / 25 R/W 0 ¹ : Simulation mode. The counters will be much shorter then real time 0: Normal mode. The counters will count full time 24:19 / / / 18 R/W 0 ¹ : Within 2 us of the resume-K to SE0 transition 0: Random time value of the resume-K to SE0 transition 17:13 / / / 12 R/W 0 ¹ : Within 2 us of the resume-K to SE0 transition 0: Random time value of the resume-K to SE0 transition 12.11 / / / 12 R/W 0 ¹ : ULPI wrapper interface will automatically set or clear DrvVbus register in ULPI PHY according to the port power status form the root hub 0: ULPI wrapper will ignore the difference between power status of root hub 0: ULPI wrapper will ignore the difference between power status of root hub and ULPI PHY 11 R/W 0 ² : ULPI wrapper will ignore the difference between power status of root hub and ULPI PHY 11 R/W 0 ² : ULPI wrapper will ignore the difference between power status of not use INCR16 when appropriate 0: Do not use INCR4. use other enabled INCRX or unspecified length burst INCR		_	_	
27:26 / / / 25 R/W 0 OHCI count select 25 R/W 0 Simulation mode. The counters will be much shorter then real time 24:19 / / / 18 R/W 0 1: Within 2 us of the resume-K to SE0 transition 17:13 / / / 12 R/W 0 1: ULPI wapper interface will automatically set or clear DrvVbus register in ULPI PHY according to the port power status form the root hub 12 R/W 0 OutPI wrapper will ignore the difference between power status of root hub and ULPI PHY 11 R/W 0 OutPI wrapper will ignore the difference between power status of not tuse INCR16 use other enabled INCRX or unspecified length burst INCR 10 R/W 0 1: Use INCR8 when appropriate 9 R/W 0 Output when appropriate 9 R/W 0 Output when appropriate 10 R/W 0 Output when appropriate 11 IV // 0 Output when appropriate 12 0 Output when appropriate Output when appropriate 13 O	28	R	1	
25 R/W 0 OHCI count select 25 R/W 0 Dismal mode. The counters will be much shorter then real time 24:19 / / / 18 R/W 0 1: Within 2 us of the resume-K to SE0 transition 17:13 / / / 12 R/W 0 1: Within 2 us of the resume-K to SE0 transition 12 R/W 0 1: ULPI wrapper interface will automatically set or clear DrvVbus register in ULPI PHY according to the port power status form the root hub 11 R/W 0 1: ULPI wrapper will ignore the difference between power status of root hub and ULPI PHY 11 R/W 0 1: Use INCR16 when appropriate 10 R/W 0 AHB Master interface INCR16 enable 1: Use INCR4 when appropriate 0: Do not use INCR6, use other enabled INCRX or unspecified length burst INCR 9 R/W 0 AHB Master interface INCR2 use other enabled INCRX or unspecified length burst INCR 8 R/W 0 2: USE INCR4, use other enabled INCRX or unspecified length burst INCR 8 R/W 0 2: Start INCR4, use other enabled INCRX or unspecified length burst INCR 8		,		1: Enable
25 R/W 0 1: Simulation mode. The counters will be much shorter then real time 24:19 / / / 18 R/W 0 1: Within 2 us of the resume-K to SE0 transition 17:13 / / / 12 R/W 0 1: Within 2 us of the resume-K to SE0 transition 12 R/W 0 PP2VBUS 12 R/W 0 PP2VBUS 11 R/W 0 1: ULPI wrapper interface will automatically set or clear DrvVbus register in ULPI PHY according to the port power status form the root hub 12 R/W 0 1: ULPI wrapper will ignore the difference between power status of root hub and ULPI PHY 11 R/W 0 1: Use INCR16 when appropriate 10 R/W 0 1: Use INCR8 when appropriate 10 R/W 0 1: Use INCR8 when appropriate 9 R/W 0 1: Use INCR4 when appropriate 9 R/W 0 1: Use INCR4 when appropriate 9 R/W 0 1: Use INCR4 when appropriate 9 R/W 0 AHB Master interface INCRX align enable	27:26	/	/	
25 R/W 0 time 24:19 / / / 18 R/W 0 1: Within 2 us of the resume-K to SE0 transition 18 R/W 0 1: Within 2 us of the resume-K to SE0 transition 17:13 / / / 12 R/W 0 1: ULPI wrapper interface will automatically set or clear DrvVbus register in ULPI PHY according to the port power status form the root hub 12 R/W 0 1: ULPI wrapper will ignore the difference between power status of root hub and ULPI PHY 11 R/W 0 1: Use INCR16 use other enabled INCRX or unspecified length burst INCR 11 R/W 0 1: Use INCR8 when appropriate 10 R/W 0 1: Use INCR8 when appropriate 9 R/W 0 1: Use INCR4, use other enabled INCRX or unspecified length burst INCR 9 R/W 0 1: Use INCR4 when appropriate 9 R/W 0 <td></td> <td></td> <td></td> <td></td>				
24:19 / / / 18 R/W 0 1: Within 2 us of the resume-K to SE0 transition 17:13 / / / 12 R/W 0 1: Within 2 us of the resume-K to SE0 transition 12. R/W 0 1: ULPI wrapper interface will automatically set or clear DrvVbus register in ULPI PHY according to the port power status form the root hub 12 R/W 0 1: ULPI wrapper will ignore the difference between power status of root hub and ULPI PHY 11 R/W 0 1: Use INCR16 enable 11 R/W 0 1: Use INCR16 when appropriate 10 R/W 0 1: Use INCR8 when appropriate 10 R/W 0 1: Use INCR8 when appropriate 9 R/W 0 1: Use INCR4 when appropriate 9 R/W 0 1: Use INCR4 when appropriate 9 R/W 0 AHB Master interface INCR8 enable 1: Use INCR4 when appropriate 0: Do not use INCR8, use other enabled INCRX or unspecified length burst INCR 9 R/W 0 AHB Master interface INCR3 align enable 1: Use INCR4 when appropriate 0: Do	25	R/W	0	
24:19 / / 18 R/W 0 1: Within 2 us of the resume-K to SE0 transition 17:13 / / / 12 R/W 0 1: Within 2 us of the resume-K to SE0 transition 12 R/W 0 PP2VBUS 12 R/W 0 PP2VBUS 11 R/W 0 PP2VBUS 12 R/W 0 PP2VBUS 11 R/W 0 PP2VBUS 12 R/W 0 PP2VBUS 13 PP2VBUS PP2VBUS 14 R/W 0 PP2VBUS 15 ULP1 wrapper will ignore the difference between power status form the root hub and ULP1 PHY 10 R/W 0 PP2VBUS 11 <td></td> <td>-</td> <td></td> <td></td>		-		
18 R/W 0 1: Within 2 us of the resume-K to SE0 transition 0: Random time value of the resume-K to SE0 transition 17:13 / / / 17:13 / / / 12 R/W 0 P2VBUS 1: ULPI wrapper interface will automatically set or clear DrvVbus register in ULPI PHY according to the port power status form the root hub 0: ULPI wrapper will ignore the difference between power status of root hub and ULPI PHY 11 R/W 0 AHB Master interface INCR16 enable 1: Use INCR16 when appropriate 0: Do not use INCR16, use other enabled INCRX or unspecified length burst INCR 10 R/W 0 AHB Master interface INCR8 enable 1: Use INCR4 when appropriate 0: Do not use INCR4, use other enabled INCRX or unspecified length burst INCR 9 R/W 0 AHB Master interface burst type INCR4 enable 1: Use INCR4 when appropriate 0: Do not use INCR4, use other enabled INCRX or unspecified length burst INCR 8 R/W 0 AHB Master interface INCRX align enable 1: Start INCRk burst only on burst x-align address 0: Start burst on any double word boundary Note: This bit must enable if any bit of bit[11:9] is enabled 7:1 / / / 0 R/W 0 I: Enable UTMI interface, disable ULPI interface				0: Normal mode. The counters will count full time
18 R/W 0 0: Random time value of the resume-K to SE0 transition 17:13 / / / 12 R/W 0 PP2VBUS 12 R/W 0 PP2VBUS 11 R/W 0 PP2VBUS 12 R/W 0 PP2VBUS 13 PP2VBUS PP2VBUS 14 PPW PP2VBUS 15 PPYDE PPYDE 16 PPUS PPYDE 17 PPUS PPYDE 18 R/W PPY	24:19	/	/	/
17:13 / / / 17:13 / / / 12 R/W 0 PP2VBUS 1: ULPI wrapper interface will automatically set or clear DrvVbus register in ULPI PHY according to the port power status form the root hub 0: ULPI wrapper will ignore the difference between power status of root hub and ULPI PHY 11 R/W 0 AHB Master interface INCR16 enable 1: Use INCR16, use other enabled INCRX or unspecified length burst INCR 10 R/W 0 AHB Master interface INCR8 enable 1: Use INCR6, use other enabled INCRX or unspecified length burst INCR 9 R/W 0 AHB Master interface INCR8 use other enabled INCRX or unspecified length burst INCR 9 R/W 0 AHB Master interface INCR8, use other enabled INCRX or unspecified length burst INCR 8 R/W 0 AHB Master interface INCR4, use other enabled INCRX or unspecified length burst INCR 8 R/W 0 AHB Master interface INCRX align enable 1: Use INCR4 when appropriate 0: Do not use INCR4, use other enabled INCRX or unspecified length burst INCR 8 R/W 0 AHB Master interface INCRX align enable 1: Start INCR4 burst only on burst x-align address 0: Start burst on any double word boundary Note: This bit must enable if any bit of bit[11:9] is enabled 7:1 / / / <t< td=""><td>18</td><td>R/W</td><td>0</td><td></td></t<>	18	R/W	0	
12 R/W 0 PP2VBUS 12 R/W 0 1: ULPI wrapper interface will automatically set or clear DrvVbus register in ULPI PHY according to the port power status form the root hub 11 R/W 0 2: ULPI wrapper will ignore the difference between power status of root hub and ULPI PHY 11 R/W 0 2: ULPI wrapper will ignore the difference between power status of root hub and ULPI PHY 11 R/W 0 2: ULPI wrapper will ignore the difference between power status of root hub and ULPI PHY 11 R/W 0 2: ULPI wrapper will ignore the difference between power status of root hub and ULPI PHY 11 R/W 0 2: ULPI wrapper will ignore the difference between power status of root hub and ULPI PHY 11 R/W 0 2: ULPI wrapper will ignore the difference between power status of root hub and ULPI PHY 10 R/W 0 2: ULPI wrapper prize is UNCR16, use other enabled INCRX or unspecified length burst INCR 9 R/W 0 2: Do not use INCR4, use other enabled INCRX or unspecified length burst INCR 8 R/W 0 2: Start INCR when appropriate is UNCR2 and unspecified length burst INCR 8 R/W 0 2: Start INCR2 burst only on burst x-align address is C: Start burst on		.,	°	0: Random time value of the resume-K to SE0 transition
12R/W01: ULPI wrapper interface will automatically set or clear DrvVbus register in ULPI PHY according to the port power status form the root hub 0: ULPI wrapper will ignore the difference between power status of root hub and ULPI PHY11R/W0AHB Master interface INCR16 enable 1: Use INCR16 when appropriate 0: Do not use INCR16, use other enabled INCRX or unspecified length burst INCR10R/W0AHB Master interface INCR3 enable 1: Use INCR8 when appropriate 0: Do not use INCR3, use other enabled INCRX or unspecified length burst INCR9R/W0AHB Master interface burst type INCR4 enable 1: Use INCR4 when appropriate 0: Do not use INCR4, use other enabled INCRX or unspecified length burst INCR9R/W0AHB Master interface INCR3 use other enabled INCRX or unspecified length burst INCR8R/W0AHB Master interface INCR4 use other enabled INCRX or unspecified length burst INCR8R/W0AHB Master interface INCR3 align enable 1: Start INCRx burst only on burst x-align address 0: Start burst on any double word boundary Note: This bit must enable if any bit of bit[11:9] is enabled7:1///0R/W0ULPI bypass enable 1: Enable UTMI interface, disable ULPI interface	17:13	/	/	/
12 R/W 0 register in ULPI PHY according to the port power status form the root hub 11 R/W 0 0 UPI wrapper will ignore the difference between power status of root hub and ULPI PHY 11 R/W 0 AHB Master interface INCR16 enable 1: Use INCR16 when appropriate 10 R/W 0 AHB Master interface INCR2 enable 1: Use INCR16 when appropriate 10 R/W 0 AHB Master interface INCR8 enable 1: Use INCR3 when appropriate 10 R/W 0 AHB Master interface INCR8 enable 1: Use INCR8 when appropriate 10 R/W 0 AHB Master interface INCR8, use other enabled INCRX or unspecified length burst INCR 9 R/W 0 AHB Master interface burst type INCR4 enable 1: Use INCR4 when appropriate 0: Do not use INCR4, use other enabled INCRX or unspecified length burst INCR 8 R/W 0 AHB Master interface INCRX align enable 1: Start INCRx burst only on burst x-align address 0: Start burst on any double word boundary Note: This bit must enable if any bit of bit[11:9] is enabled 7:1 7:1 / / / 0 R/W 0 ULP				PP2VBUS
12 R/W 0 root hub 10 R/W 0 root hub and ULPI PHY 11 R/W 0 AHB Master interface INCR16 enable 11 R/W 0 I: Use INCR16 when appropriate 0: Do not use INCR16, use other enabled INCRX or unspecified length burst INCR 10 R/W 0 AHB Master interface INCR8 enable 1: Use INCR16, use other enabled INCRX or unspecified length burst INCR AHB Master interface INCR8 enable 10 R/W 0 AHB Master interface INCR8 enable 1: Use INCR4 when appropriate 0: Do not use INCR8, use other enabled INCRX or unspecified length burst INCR 9 R/W 0 AHB Master interface burst type INCR4 enable 1: Use INCR4 when appropriate 0: Do not use INCR4, use other enabled INCRX or unspecified length burst INCR 8 R/W 0 AHB Master interface INCRX align enable 8 R/W 0 AHB Master interface INCRX align enable 7:1 / / / 0 R/W 0 I: Start INCRx burst only on burst x-align address 0: Start burst on any double word boundary Note: This bit must enable if any bit of bit[11:9] is enabled				1: ULPI wrapper interface will automatically set or clear DrvVbus
Image: Second	10		0	register in ULPI PHY according to the port power status form the
11 R/W 0 AHB Master interface INCR16 enable 11 R/W 0 1: Use INCR16 when appropriate 10 R/W 0 AHB Master interface INCR8 enable 10 R/W 0 AHB Master interface INCR8 enable 10 R/W 0 AHB Master interface INCR8 enable 11 Use INCR8 when appropriate 0: Do not use INCR8, use other enabled INCRX or unspecified length burst INCR 9 R/W 0 AHB Master interface burst type INCR4 enable 1: Use INCR4 when appropriate 0: Do not use INCR4, use other enabled INCRX or unspecified length burst INCR 9 R/W 0 AHB Master interface INCR3 align enable 1: Use INCR4 when appropriate 0: Do not use INCR4, use other enabled INCRX or unspecified length burst INCR 8 R/W 0 AHB Master interface INCRX align enable 8 R/W 0 AHB Master interface INCRX align enable 1: Start INCRx burst only on burst x-align address 0: Start burst on any double word boundary Note: This bit must enable if any bit of bit[11:9] is enabled 7:1 7:1 / / / 0 R/W 0 ULPI byp	12	R/ W	0	root hub
11 R/W 0 AHB Master interface INCR16 enable 1: Use INCR16 when appropriate 0: Do not use INCR16, use other enabled INCRX or unspecified length burst INCR 10 R/W 0 AHB Master interface INCR8 enable 1: Use INCR8 when appropriate 0: Do not use INCR8, use other enabled INCRX or unspecified length burst INCR 9 R/W 0 AHB Master interface burst type INCR4 enable 1: Use INCR8, use other enabled INCRX or unspecified length burst INCR 9 R/W 0 AHB Master interface burst type INCR4 enable 1: Use INCR4, use other enabled INCRX or unspecified length burst INCR 8 R/W 0 AHB Master interface INCRX align enable 1: Use INCR4, use other enabled INCRX or unspecified length burst INCR 8 R/W 0 AHB Master interface INCRX align enable 1: Start INCRx burst only on burst x-align address 0: Start burst on any double word boundary Note: This bit must enable if any bit of bit[11:9] is enabled 7:1 / / / 0 R/W 0 ULPI bypass enable 1: Enable UTMI interface, disable ULPI interface				0: ULPI wrapper will ignore the difference between power status
11R/W01: Use INCR16 when appropriate 0: Do not use INCR16, use other enabled INCRX or unspecified length burst INCR10R/W0AHB Master interface INCR8 enable 1: Use INCR8 when appropriate 				of root hub and ULPI PHY
11 R/W 0 0: Do not use INCR16, use other enabled INCRX or unspecified length burst INCR 10 R/W 0 AHB Master interface INCR8 enable 1: Use INCR8 when appropriate 0: Do not use INCR8, use other enabled INCRX or unspecified length burst INCR 9 R/W 0 AHB Master interface burst type INCR4 enable 1: Use INCR4 when appropriate 0: Do not use INCR4, use other enabled INCRX or unspecified length burst INCR 9 R/W 0 AHB Master interface burst type INCR4 enable 1: Use INCR4 when appropriate 0: Do not use INCR4, use other enabled INCRX or unspecified length burst INCR 8 R/W 0 AHB Master interface INCRX align enable 8 R/W 0 AHB Master interface INCRX align enable 1: Start INCR 0 Start burst on any double word boundary Note: This bit must enable if any bit of bit[11:9] is enabled 0: Start burst on any double word boundary 0 R/W 0 ULPI bypass enable 1: Enable UTMI interface, disable ULPI interface 1: Enable UTMI interface, disable ULPI interface				AHB Master interface INCR16 enable
10 R/W 0 AHB Master interface INCR8 enable 10 R/W 0 AHB Master interface INCR8 enable 1: Use INCR8 when appropriate 0: Do not use INCR8, use other enabled INCRX or unspecified length burst INCR 9 R/W 0 AHB Master interface burst type INCR4 enable 1: Use INCR4 when appropriate 0: Do not use INCR4, use other enabled INCRX or unspecified length burst INCR 9 R/W 0 AHB Master interface burst type INCR4 enable 1: Use INCR4 when appropriate 0: Do not use INCR4, use other enabled INCRX or unspecified length burst INCR 8 R/W 0 AHB Master interface INCRX align enable 1: Start INCR burst only on burst x-align address 0: Start burst on any double word boundary Note: This bit must enable if any bit of bit[11:9] is enabled 7:1 7:1 / / 0 R/W 0	11	DAM		1: Use INCR16 when appropriate
10R/W0AHB Master interface INCR8 enable 1: Use INCR8 when appropriate 0: Do not use INCR8, use other enabled INCRX or unspecified length burst INCR9R/W0AHB Master interface burst type INCR4 enable 1: Use INCR4 when appropriate 0: Do not use INCR4, use other enabled INCRX or unspecified length burst INCR9R/W0AHB Master interface burst type INCR4 enable 1: Use INCR4 when appropriate 0: Do not use INCR4, use other enabled INCRX or unspecified length burst INCR8R/W0AHB Master interface INCRX align enable 1: Start INCRx burst only on burst x-align address 0: Start burst on any double word boundary Note: This bit must enable if any bit of bit[11:9] is enabled7:1//0R/W01: Enable UTMI interface, disable ULPI interface		R/W	0	0: Do not use INCR16, use other enabled INCRX or unspecified
10R/W01: Use INCR8 when appropriate 0: Do not use INCR8, use other enabled INCRX or unspecified length burst INCR9R/W0AHB Master interface burst type INCR4 enable 1: Use INCR4 when appropriate 0: Do not use INCR4, use other enabled INCRX or unspecified length burst INCR8R/W0AHB Master interface INCR4, use other enabled INCRX or unspecified length burst INCR8R/W0AHB Master interface INCRX align enable 1: Start INCRx burst only on burst x-align address 0: Start burst on any double word boundary Note: This bit must enable if any bit of bit[11:9] is enabled7:1//0R/W0ULPI bypass enable 1: Enable UTMI interface, disable ULPI interface				length burst INCR
10R/W000: Do not use INCR8, use other enabled INCRX or unspecified length burst INCR9R/W0AHB Master interface burst type INCR4 enable 1: Use INCR4 when appropriate 0: Do not use INCR4, use other enabled INCRX or unspecified length burst INCR8R/W0AHB Master interface INCRX align enable 1: Start INCRx burst only on burst x-align address 0: Start burst on any double word boundary Note: This bit must enable if any bit of bit[11:9] is enabled7:1///0R/W0ULPI bypass enable 1: Enable UTMI interface, disable ULPI interface				AHB Master interface INCR8 enable
9 R/W 0 AHB Master interface burst type INCR4 enable 1: Use INCR4 when appropriate 9 R/W 0 AHB Master interface burst type INCR4 enable 1: Use INCR4 when appropriate 0 Do not use INCR4, use other enabled INCRX or unspecified length burst INCR 8 R/W 0 AHB Master interface INCRX align enable 8 R/W 0 AHB Master interface INCRX align enable 1: Start INCRx burst only on burst x-align address 0: Start burst on any double word boundary Note: This bit must enable if any bit of bit[11:9] is enabled 7:1 7:1 / / 0 R/W 0	10	P /\\/	0	1: Use INCR8 when appropriate
9 R/W 0 AHB Master interface burst type INCR4 enable 9 R/W 0 AHB Master interface burst type INCR4 enable 1: Use INCR4 when appropriate 0: Do not use INCR4, use other enabled INCRX or unspecified length burst INCR 8 R/W 0 AHB Master interface INCRX align enable 8 R/W 0 AHB Master interface INCRX align enable 1: Start INCRx burst only on burst x-align address 0: Start burst on any double word boundary Note: This bit must enable if any bit of bit[11:9] is enabled 7:1 7:1 / / 0 R/W 0	10		0	0: Do not use INCR8, use other enabled INCRX or unspecified
9R/W01: Use INCR4 when appropriate 0: Do not use INCR4, use other enabled INCRX or unspecified length burst INCR8R/W0AHB Master interface INCRX align enable 1: Start INCRx burst only on burst x-align address 0: Start burst on any double word boundary Note: This bit must enable if any bit of bit[11:9] is enabled7:1//0R/W0ULPI bypass enable 1: Enable UTMI interface, disable ULPI interface				length burst INCR
9 R/W 0 0: Do not use INCR4, use other enabled INCRX or unspecified length burst INCR 8 R/W 0 AHB Master interface INCRX align enable 1: Start INCRx burst only on burst x-align address 0: Start burst on any double word boundary Note: This bit must enable if any bit of bit[11:9] is enabled 7:1 / / 0 R/W 0 1: Enable UTMI interface, disable ULPI interface				AHB Master interface burst type INCR4 enable
8 R/W 0 O: Do not use INCR4, use other enabled INCRX or unspecified length burst INCR 8 R/W 0 AHB Master interface INCRX align enable 1: Start INCRx burst only on burst x-align address O: Start burst on any double word boundary Note: This bit must enable if any bit of bit[11:9] is enabled 7:1 / 0 R/W 0 R/W			0	1: Use INCR4 when appropriate
8 R/W 0 AHB Master interface INCRX align enable 1: Start INCRx burst only on burst x-align address 0: Start burst on any double word boundary 7:1 / / 0 R/W 0 ULPI bypass enable 1: Enable UTMI interface, disable ULPI interface	9	R/ W	0	0: Do not use INCR4, use other enabled INCRX or unspecified
8 R/W 0 1: Start INCRx burst only on burst x-align address 0: Start burst on any double word boundary Note: This bit must enable if any bit of bit[11:9] is enabled 7:1 / / 0 R/W 0 ULPI bypass enable 1: Enable UTMI interface, disable ULPI interface				length burst INCR
8 R/W 0 0: Start burst on any double word boundary Note: This bit must enable if any bit of bit[11:9] is enabled 7:1 / / 0 R/W 0 1: Enable UTMI interface, disable ULPI interface				AHB Master interface INCRX align enable
0: Start burst on any double word boundary Note: This bit must enable if any bit of bit[11:9] is enabled 7:1 / 0 R/W 0 R/W 0 1: Enable UTMI interface, disable ULPI interface	8			1: Start INCRx burst only on burst x-align address
7:1 / / 0 R/W 0 ULPI bypass enable 1: Enable UTMI interface, disable ULPI interface		R/W	U	0: Start burst on any double word boundary
0 R/W 0 ULPI bypass enable 1: Enable UTMI interface, disable ULPI interface				Note: This bit must enable if any bit of bit[11:9] is enabled
0 R/W 0 ULPI bypass enable 1: Enable UTMI interface, disable ULPI interface	7:1	/	/	/
0 R/W 0 1: Enable UTMI interface, disable ULPI interface				ULPI bypass enable
	0	R/W	0	
				0: Enable ULPI interface, disable UTMI interface

9.6.6.23 0x0808 HCI Control 3 Register (Default Value: 0x0001_0000)

Offset: 0x0808			Register Name: HCI_CTRL3
Bit	Read/Write	Default/Hex	Description
31:17	/	/	Reserved
			Linestate Change Detect
16	R/W1C	1	0: Linestate change not dected
10	N/ WIC	1 I	1: Linestate change dected
			Write '1' to clear.
15:4	/	/	Reserved
			Remote Wakeup Enable
3	R/W	0	1: Enable
			0: Disable
2	/	/	Reserved
			Linestate Change Interrupt Enable
1	R/W	0	1: Enable
			0: Disable
			Linestate Change Detect Enable
0	R/W	0	1: Enable
			0: Disable

9.6.6.24 0x0810 PHY Control Register (Default Value: 0x0000_0008)

Offset: 0	x0810		Register Name: PHY_CTRL
Bit	Read/Write	Default/Hex	Description
31:17	1	/	/
16	R/W	0	bist_en_a
15:8	R/W	0	vc_addr
7	R/W	0	vc_di
6:4	1	1	/
			SIDDQ
3	R/W	0x1	1: Write 1 to disable phy
			0: Write 0 to enable phy
2:1	/	/	/
0	R/W	0x0	vc_clk

-

9.6.6.25 0x0824 PHY Status Register (Default Value: 0x0000_0000)

Offset: 0	x0824		Register Name: PHY_STATUS
Bit	Read/Write	Default/Hex	Description
31:18	/	/	/
17	R	0	Bist_error
16	R	0	bist_done
15:1	/	/	/
0	R	0	vc_do

9.6.6.26 0x0828 HCI SIE Port Disable Control Register (Default Value: 0x0000_0000)

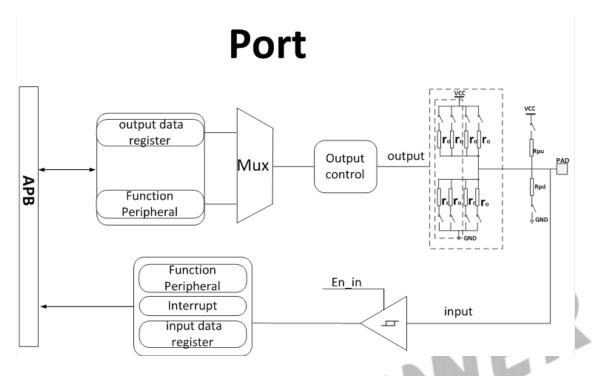
	x0828		Register Name: USB_SPDCR
Bit	Read/Write	Default/Hex	Description
31:17	/	/	/
			SEO Status
16	R/W	0	This bit is set when no-se0 is detected before SOF when bit[1:0]
			is 10b or 11b
15:5	1	/	
			resume_sel
4	R/W	0	When set k-se0 transition 2 us, setting this bit to 1, which is
			cooperated with ss_utmi_backward_enb_i.
3:2	/		1
			Port Disable Control
			00: Port Disable when no-se0 detect before SOF
1:0	R/W	0	01: Port Disable when no-se0 detect before SOF
1.0	K/ VV	0	10: No Port Disable when no-se0 detect before SOF
			11: Port Disable when no-se0 3 time detect before SOF during 8
			frames

9.7 **GPIO**

9.7.1 Overview

The general purpose input/output (GPIO) is one of the blocks controlling the chip multiplexing pins. The D1s supports 6 groups of GPIO pins. Each pin can be configured as input or output and these pins are used to generate input signals or output signals for special purposes.

The Port Controller has the following features:


- 6 groups of ports (PB, PC, PD, PE, PF, PG)
- Software control for each signal pin
- Data input (capture)/output (drive)
- WINER Each GPIO peripheral can produce an interrupt
- Pull-up/Pull-down/no-Pull register control
- Control the direction of every signal •
- 4 drive strengths in each operating mode
- Up to 72 interrupts
- Configurable interrupt edges

9.7.2 **Block Diagram**

The following figure shows the block diagram of the GPIO.

Figure 9-67 GPIO Block Diagram

The GPIO consists of the digital part (GPIO, external interface) and IO analog part (output buffer, dual pull down, pad). The digital part can select the output interface by the MUX switch; the analog part can configure pull up/down and buffer strength.

When executing GPIO read state, the GPIO reads the current level of the pin into the internal register bus. When not executing GPIO read state, the external pin and the internal register bus are off-status, which is highimpedance.

9.7.3 Functional Description

9.7.3.1 Multi-function Port

The D1s includes 72 multi-functional input/output port pins. There are 6 ports as listed below.

Port Name	Number of Pins	Input Driver	Output Driver	Multiplex Pins	Power
РВ	6	Schmitt	CMOS	LCD/I2S/TWI/PWM/IR/UART/PB-EINT	3.3 V
РС	6	Schmitt	CMOS	SPI/SMHC/UART/BOOT/TWI/TCON/PC-EINT	3.3 V
PD	23	Schmitt	CMOS	LCD/LVDS/OWA/TWI/IR/DSI/SPI-DBI/DMIC/ UART/PWM/IR/PD-EINT	3.3 V/ 1.8 V

Table 9-20 Multi-function Port

Confidential

Port Name	Number of Pins	Input Driver	Output Driver	Multiplex Pins	Power
					3.3 V/
PE	14	Schmitt	CMOS	CMOS NCSI/TWI/UART/PWM/LCD/OWA/LEDC/IR/ JTAG/EMAC/PE-EINT	
PF	7	Schmitt	CMOS	SMHC/JTAG/UART/OWA/TWI/IR/I2S/LEDC/ PWM/PF-EINT	3.3 V
PG	16	Schmitt	CMOS	SMHC/UART/PWM/I2S/TWI/EMAC/OWA/ IR/TCON/LEDC/SPI/PG-EINT	3.3 V/ 1.8 V

9.7.3.2 GPIO Multiplex Function

Table 9-21 to Table 9-26 show the multiplex function pins of the D1s.

For each GPIO, Function0 is input function; Function1 is output function; Function9 to Function13 are reserved.

Table 9-21 PB Multiplex Function

GPIO Port	Function 2	Function 3	Function 4	Function 5	Function 6	Function 7	Function 8	Function 14
PB2	LCD0-D0	I2S2-DOUT2	TWI0-SDA	I2S2-DIN2	LCD0-D18	UART4-TX		PB-EINT2
PB3	LCD0-D1	I2S2-DOUT1	TWI0-SCK	I2S2-DIN0	LCD0-D19	UART4-RX		PB-EINT3
PB4	LCD0-D8	I2S2-DOUT0	TWI1-SCK	I2S2-DIN1	LCD0-D20	UART5-TX		PB-EINT4
PB5	LCD0-D9	I2S2-BCLK	TWI1-SDA	PWM0	LCD0-D21	UART5-RX		PB-EINT5
PB6	LCD0-D16	I2S2-LRCK	TWI3-SCK	PWM1	LCD0-D22	UART3-TX	CPUBIST0	PB-EINT6
PB7	LCD0-D17	I2S2-MCLK	TWI3-SDA	IR-RX	LCD0-D23	UART3-RX	CPUBIST1	PB-EINT7

Table 9-22 PC Multiplex Function

GPIO Port	Function 2	Function 3	Function 4	Function 5	Function 6	Function 7	Function 8	Function 14
PC2	SPIO-CLK	SDC2-CLK						PC-EINT2
PC3	SPIO-CSO	SDC2-CMD						PC-EINT3
PC4	SPI0-MOSI	SDC2-D2	BOOT-SELO					PC-EINT4
PC5	SPI0-MISO	SDC2-D1	BOOT-SEL1					PC-EINT5
PC6	SPIO-WP	SDC2-D0	UART3-TX	TWI3-SCK	DBG-CLK			PC-EINT6
PC7	SPIO-HOLD	SDC2-D3	UART3-RX	TWI3-SDA	TCON-TRIG			PC-EINT7

Table 9-23 PD Multiplex Function

GPIO Port	Function 2	Function 3	Function 4	Function 5	Function 6	Function 7	Function 8	Function 14
PD0	LCD0-D2	LVDS0-V0P	DSI-D0P	TWI0-SCK				PD-EINT0
PD1	LCD0-D3	LVDS0-V0N	DSI-DON	UART2-TX				PD-EINT1
PD2	LCD0-D4	LVDS0-V1P	DSI-D1P	UART2-RX				PD-EINT2
PD3	LCD0-D5	LVDS0-V1N	DSI-D1N	UART2-RTS				PD-EINT3
PD4	LCD0-D6	LVDS0-V2P	DSI-CKP	UART2-CTS				PD-EINT4
PD5	LCD0-D7	LVDS0-V2N	DSI-CKN	UART5-TX				PD-EINT5
PD6	LCD0-D10	LVDS0-CKP	DSI-D2P	UART5-RX				PD-EINT6
PD7	LCD0-D11	LVDS0-CKN	DSI-D2N	UART4-TX				PD-EINT7
PD8	LCD0-D12	LVDS0-V3P	DSI-D3P	UART4-RX				PD-EINT8
PD9	LCD0-D13	LVDS0-V3N	DSI-D3N	PWM6				PD-EINT9
PD10	LCD0-D14	LVDS1-V0P	SPI1-CS/DBI-CSX	UART3-TX				PD-EINT10
PD11	LCD0-D15	LVDS1-V0N	SPI1-CLK/ DBI-SCLK	UART3-RX				PD-EINT11
PD12	LCD0-D18	LVDS1-V1P	SPI1-MOSI/ DBI-SDO	TWI0-SDA				PD-EINT12

GPIO Port	Function 2	Function 3	Function 4	Function 5	Function 6	Function 7	Function 8	Function 14
PD13	LCD0-D19	LVDS1-V1N	SPI1-MISO/ DBI-SDI/DBI-TE/	UART3-RTS				PD-EINT13
			DBI-DCX					
PD14	LCD0-D20	LVDS1-V2P	SPI1-HOLD/	UART3-CTS				PD-EINT14
			DBI-DCX/ DBI-WRX					
PD15	LCD0-D21	LVDS1-V2N	SPI1-WP/DBI-TE	IR-RX				PD-EINT15
PD16	LCD0-D22	LVDS1-CKP	DMIC-DATA3	PWM0				PD-EINT16
PD17	LCD0-D23	LVDS1-CKN	DMIC-DATA2	PWM1				PD-EINT17
PD18	LCD0-CLK	LVDS1-V3P	DMIC-DATA1	PWM2				PD-EINT18
PD19	LCD0-DE	LVDS1-V3N	DMIC-DATA0	PWM3				PD-EINT19
PD20	LCD0-HSYNC	TWI2-SCK	DMIC-CLK	PWM4				PD-EINT20
PD21	LCD0-VSYNC	TWI2-SDA	UART1-TX	PWM5				PD-EINT21
PD22	OWA-OUT	IR-RX	UART1-RX	PWM7				PD-EINT22

Table 9-24 PE Multiplex Function

GPIO Port	Function 2	Function 3	Function 4	Function 5	Function 6	Function 7	Function 8	Function 14
PEO	NCSIO-HSYNC	UART2-RTS	TWI1-SCK	LCD0-HSYNC			RGMII-RXCTRL/ RMII-CRS-DV	PE-EINTO
PE1	NCSIO-VSYNC	UART2-CTS	TWI1-SDA	LCD0-VSYNC			RGMII-RXD0/ RMII-RXD0	PE-EINT1
PE2	NCSIO-PCLK	UART2-TX	TWI0-SCK	CLK-FANOUT0	UARTO-TX		RGMII-RXD1/ RMII-RXD1	PE-EINT2
PE3	NCSIO-MCLK	UART2-RX	TWIO-SDA	CLK-FANOUT1	UARTO-RX		RGMII-TXCK/ RMII-TXCK	PE-EINT3
PE4	NCSIO-DO	UART4-TX	TWI2-SCK	CLK-FANOUT2		R-JTAG-MS	RGMII-TXD0/ RMII-TXD0	PE-EINT4
PE5	NCSIO-D1	UART4-RX	TWI2-SDA	LEDC-DO		R-JTAG-DI	RGMII-TXD1/ RMII-TXD1	PE-EINT5
PE6	NCSI0-D2	UART5-TX	тwi3-sck	OWA-IN		R-JTAG-DO	RGMII-TXCTRL/ RMII-TXEN	PE-EINT6
PE7	NCSIO-D3	UART5-RX	TWI3-SDA	OWA-OUT		R-JTAG-CK	RGMII-CLKIN/ RMII-RXER	PE-EINT7
PE8	NCSI0-D4	UART1-RTS	PWM2	UART3-TX			MDC	PE-EINT8
PE9	NCSI0-D5	UART1-CTS	PWM3	UART3-RX			MDIO	PE-EINT9
PE10	NCSIO-D6	UART1-TX	PWM4	IR-RX			EPHY-25M	PE-EINT10
PE11	NCSIO-D7	UART1-RX					RGMII-TXD2	PE-EINT11
PE12	TWI2-SCK	NCSI0-FIELD					RGMII-TXD3	PE-EINT12
PE13	TWI2-SDA	PWM5			DMIC-DATA3		RGMII-RXD2	PE-EINT13

Table 9-25 PF Multiplex Function

GPIO Port	Function 2	Function 3	Function 4	Function 5	Function 6	Function 7	Function 8	Function 14
PFO	SDC0-D1		R-JTAG-MS	I2S2-DOUT1	12S2-DIN0			PF-EINTO
PF1	SDC0-D0		R-JTAG-DI	I2S2-DOUT0	I2S2-DIN1			PF-EINT1
PF2	SDC0-CLK	UARTO-TX	TWI0-SCK	LEDC-DO	OWA-IN			PF-EINT2
PF3	SDC0-CMD		R-JTAG-DO	I2S2-BCLK				PF-EINT3
PF4	SDC0-D3	UARTO-RX	TWI0-SDA	PWM6	IR-TX			PF-EINT4

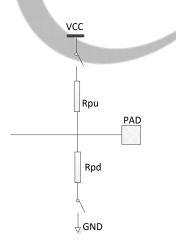
GPIO Port	Function 2	Function 3	Function 4	Function 5	Function 6	Function 7	Function 8	Function 14
PF5	SDC0-D2		R-JTAG-CK	I2S2-LRCK				PF-EINT5
PF6		OWA-OUT	IR-RX	I2S2-MCLK	PWM5			PF-EINT6

Table 9-26 PG Multiplex Function

GPIO Port	Function 2	Function 3	Function 4	Function 5	Function 6	Function 7	Function 8	Function 14
PG0	SDC1-CLK	UART3-TX	RGMII-RXCTRL/ RMII-CRS-DV	PWM7				PG-EINT0
PG1	SDC1-CMD	UART3-RX	RGMII-RXD0/ RMII-RXD0	PWM6				PG-EINT1
PG2	SDC1-D0	UART3-RTS	RGMII-RXD1/ RMII-RXD1	UART4-TX				PG-EINT2
PG3	SDC1-D1	UART3-CTS	RGMII-TXCK/ RMII-TXCK	UART4-RX				PG-EINT3
PG4	SDC1-D2	UART5-TX	RGMII-TXD0/ RMII-TXD0	PWM5				PG-EINT4
PG5	SDC1-D3	UART5-RX	RGMII-TXD1/ RMII-TXD1	PWM4				PG-EINT5
PG6	UART1-TX	TWI2-SCK	RGMII-TXD2	PWM1				PG-EINT6
PG7	UART1-RX	TWI2-SDA	RGMII-TXD3	OWA-IN				PG-EINT7
PG8	UART1-RTS	TWI1-SCK	RGMII-RXD2	UART3-TX				PG-EINT8
PG9	UART1-CTS	TWI1-SDA	RGMII-RXD3	UART3-RX			~	PG-EINT9
PG10	PWM3	TWI3-SCK	RGMII-RXCK	CLK-FANOUT0	IR-RX			PG-EINT10
PG11	I2S1-MCLK	TWI3-SDA	EPHY-25M	CLK-FANOUT1	TCON-TRIG			PG-EINT11
PG12	I2S1-LRCK	тwio-sck	RGMII-TXCTRL/ RMII-TXEN	CLK-FANOUT2	PWMO	UART1-TX		PG-EINT12
PG13	I2S1-BCLK	TWI0-SDA	RGMII-CLKIN/ RMII-RXER	PWM2	LEDC-DO	UART1-RX		PG-EINT13
PG14	I2S1-DIN0	TWI2-SCK	MDC	I2S1-DOUT1	SPIO-WP	UART1-RTS		PG-EINT14
PG15	I2S1-DOUT0	TWI2-SDA	MDIO	I2S1-DIN1	SPIO-HOLD	UART1-CTS		PG-EINT15

9.7.3.3 Port Function

The Port Controller supports 6 GPIOs, every GPIO can configure as Input, Output, Function Peripheral, IO disable or Interrupt function. The configuration instruction of every function is as follows.


Table 9-27 Port Function

	Function	Buffer Strength	Pull Up	Pull Down			
Input	GPIO/Multiplexing Input	/	х	х			
Output	GPIO/Multiplexing Output	Y	х	х			
Disable	Pull Up	/	Y	N			
Disable	Pull Down	/	N	Y			
Interrupt	Trigger / X X						
	igure, configuration is invalic	1		ER			
Y: configure	2						
X: Select co	onfiguration according to the	actual situation					
N: Forbid to	o configure	1.					

9.7.3.4 Pull Up/Down and High-Impedance Logic

Each IO pin can configure the internal pull-up/down function or high-impedance.

Figure 9-68 Pull up/down Logic

High-impedance, the output is float state, all buffer is off, the level is decided by external high/low level. When high-impedance, the software configures the switch on Rpu and Rpd as off, and the multiplexing function of IO is set as IO disable or input by software.

Pull-up, an uncertain signal is pulled high by resistance, the resistance has a current-limiting function. When pulling up, the switch on Rpu is conducted by software configuration, the IO is pulled up to VCC by Rpu.

Pull-down, an uncertain signal is pulled low by a resistance. When pulling down, the switch on Rpd is conducted by software configuration, the IO is pulled down to GND by Rpd.

The pull-up/down of each IO is weak pull-up/down.

The setting of pull-down, pull-up, high-impedance is decided by the external circuit.

Buffer Strength 9.7.3.5

Each IO can be set as different buffer strength. The IO buffer diagram is as follows.

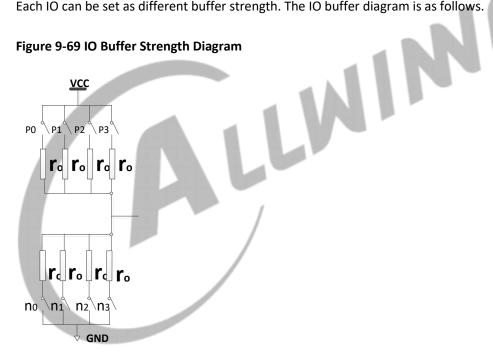


Figure 9-69 IO Buffer Strength Diagram

When output high level, the n0, n1, n2, n3 of NMOS is off, the p0, p1, p2, p3 of PMOS is on. When the buffer strength is set to 0 (buffer strength is weakest), only the p0 is on, the output impedance is maximum, the impedance value is r0. When the buffer strength is set to 1, only the p0 and p1 is on, the output impedance is equivalent to two r0 in parallel, the impedance value is r0/2. When the buffer strength is 2, only the p0, p1, and p2 is on, the output impedance is equivalent to three r0 in parallel, the impedance value is r0/3. When buffer strength is 3, the p0, p1, p2, and p3 is on, the output impedance is equivalent to four r0 in parallel, the impedance value is r0/4.

When output low level, the p0, p1, p2, p3 of PMOS is off, the n0, n1, n2, n3 of NMOS is on. When the buffer strength is set to 0 (buffer strength is weakest), only the n0 is on, the output impedance is maximum, the

impedance value is r0. When the buffer strength is set to 1, only the n0 and n1 is on, the output impedance is equivalent to two r0 in parallel, the impedance value is r0/2. When the buffer strength is 2, only the n0, n1, and n2 is on, the output impedance is equivalent to three r0 in parallel, the impedance value is r0/3. When the buffer strength is 3, the n0, n1, n2, and n3 is on, the output impedance is equivalent to four r0 in parallel, the impedance value is r0/4.

When GPIO is set to input or interrupt function, between the output driver circuit and the port is unconnected, the driver configuration is invalid.

🛄 ΝΟΤΕ

The typical value of r0 is 180Ω .

9.7.3.6 Interrupt

Each group IO has an independent interrupt number. The IO within-group uses one interrupt number when one IO generates interrupt, the GPIO pins sent interrupt request to interrupt module. External Interrupt Status Register is used to query which IO generates interrupt.

The interrupt trigger of GPIO supports the following trigger types.

- Positive Edge: When a low level changes to a high level, the interrupt will generate. No matter how long a high level keeps, the interrupt generates only once.
- Negative Edge: When a high level changes to a low level, the interrupt will generate. No matter how long a low level keeps, the interrupt generates only once.
- High Level: Just keep a high level and the interrupt will always generate.
- Low Level: Just keep a low level and the interrupt will always generate.
- Double Edge: Positive and negative edge.

External Interrupt Configure Register is used to configure the trigger type.

The GPIO interrupt supports hardware debounce function by setting External Interrupt Debounce Register. Sample trigger signal using a lower sample clock, to reach the debounce effect because the dither frequency of the signal is higher than the sample frequency.

Set the sample clock source by PIO_INT_CLK_SELECT and the prescale factor by DEB_CLK_PRE_SCALE.

9.7.4 Register List

Module Name	Base Address
GPIO	0x02000000

Register Name	Offset	Description	
PB_CFG0	0x0030	PB Configure Register 0	
PB_CFG1	0x0034	PB Configure Register 1	
PB_DAT	0x0040	PB Data Register	
PB_DRV0	0x0044	PB Multi_Driving Register 0	
PB_DRV1	0x0048	PB Multi_Driving Register 1	
PB_PULLO	0x0054	PB Pull Register 0	
PC_CFG0	0x0060	PC Configure Register 0	
PC_DAT	0x0070	PC Data Register	
PC_DRV0	0x0074	PC Multi_Driving Register 0	
PC_PULL0	0x0084	PC Pull Register 0	
PD_CFG0	0x0090	PD Configure Register 0	
PD_CFG1	0x0094	PD Configure Register 1	
PD_CFG2	0x0098	PD Configure Register 2	
PD_DAT	0x00A0	PD Data Register	
PD_DRV0	0x00A4	PD Multi_Driving Register 0	
PD_DRV1	0x00A8	PD Multi_Driving Register 1	
PD_DRV2	0x00AC	PD Multi_Driving Register 2	
PD_PULL0	0x00B4	PD Pull Register 0	
PD_PULL1	0x00B8	PD Pull Register 1	
PE_CFG0	0x00C0	PE Configure Register 0	
PE_CFG1	0x00C4	PE Configure Register 1	
PE_DAT	0x00D0	PE Data Register	
PE_DRV0	0x00D4	PE Multi_Driving Register 0	
PE_DRV1	0x00D8	PE Multi_Driving Register 1	
PE_PULLO	0x00E4	PE Pull Register 0	
PF_CFG0	0x00F0	PF Configure Register 0	
PF_DAT	0x0100	PF Data Register	
PF_DRV0	0x0104	PF Multi_Driving Register 0	
PF_PULL0	0x0114	PF Pull Register 0	
PG_CFG0	0x0120	PG Configure Register 0	
PG_CFG1	0x0124	PG Configure Register 1	
PG_DAT	0x0130	PG Data Register	

Register Name	Offset	Description	
PG_DRV0	0x0134	PG Multi_Driving Register 0	
PG_DRV1	0x0138	PG Multi_Driving Register 1	
PG_DRV3	0x0140	PG Multi_Driving Register 3	
PG_PULL0	0x0144	PG Pull Register 0	
PB_EINT_CFG0	0x0220	PB External Interrupt Configure Register 0	
PB_EINT_CTL	0x0230	PB External Interrupt Control Register	
PB_EINT_STATUS	0x0234	PB External Interrupt Status Register	
PB_EINT_DEB	0x0238	PB External Interrupt Debounce Register	
PC_EINT_CFG0	0x0240	PC External Interrupt Configure Register 0	
PC_EINT_CTL	0x0250	PC External Interrupt Control Register	
PC_EINT_STATUS	0x0254	PC External Interrupt Status Register	
PC_EINT_DEB	0x0258	PC External Interrupt Debounce Register	
PD_EINT_CFG0	0x0260	PD External Interrupt Configure Register 0	
PD_EINT_CFG1	0x0264	PD External Interrupt Configure Register 1	
PD_EINT_CFG2	0x0268	PD External Interrupt Configure Register 2	
PD_EINT_CTL	0x0270	PD External Interrupt Control Register	
PD_EINT_STATUS	0x0274	PD External Interrupt Status Register	
PD_EINT_DEB	0x0278	PD External Interrupt Debounce Register	
PE_EINT_CFG0	0x0280	PE External Interrupt Configure Register 0	
PE_EINT_CFG1	0x0284	PE External Interrupt Configure Register 1	
PE_EINT_CTL	0x0290	PE External Interrupt Control Register	
PE_EINT_STATUS	0x0294	PE External Interrupt Status Register	
PE_EINT_DEB	0x0298	PE External Interrupt Debounce Register	
PF_EINT_CFG0	0x02A0	PF External Interrupt Configure Register 0	
PF_EINT_CTL	0x02B0	PF External Interrupt Control Register	
PF_EINT_STATUS	0x02B4	PF External Interrupt Status Register	
PF_EINT_DEB	0x02B8	PF External Interrupt Debounce Register	
PG_EINT_CFG0	0x02C0	PG External Interrupt Configure Register 0	
PG_EINT_CFG1	0x02C4	PG External Interrupt Configure Register 1	
PG_EINT_CTL	0x02D0	PG External Interrupt Control Register	
PG_EINT_STATUS	0x02D4	PG External Interrupt Status Register	
PG_EINT_DEB	0x02D8 PG External Interrupt Debounce Registe		
		PIO Group Withstand Voltage Mode Select	
PIO_POW_MOD_SEL	0x0340	Register	
		PIO Group Withstand Voltage Mode Select Control	
PIO_POW_MS_CTL	0x0344	Register	
PIO_POW_VAL	0x0348	PIO Group Power Value Register	

Register Name Offset		Description	
PIO_POW_VOL_SEL_CTL	0x0350	PIO Group Power Voltage Select Control Register	

9.7.5 Register Description

9.7.5.1 0x0030 PB Configure Register 0 (Default Value: 0xFFF_FFFF)

Offset: 0	Offset: 0x0030		Register Name: PB_CFG0	
Bit	Read/Write	Default/Hex	Description	
			PB7_SELECT	
			PB7 Select	
			0000:Input	0001:Output
21.20		0	0010:LCD0-D17	0011:I2S2-MCLK
31:28	R/W	0xF	0100:TWI3-SDA	0101:IR-RX
			0110:LCD0-D23	0111:UART3-RX
			1000:CPUBIST1	1001:Reserved
			1110:PB-EINT7	1111:IO Disable
			PB6_SELECT	
		OxF	PB6 Select	
			0000:Input	0001:Output
27:24	R/W		0010:LCD0-D16	0011:I2S2-LRCK
27:24	K/ W		0100:TWI3-SCK	0101:PWM1
			0110:LCD0-D22	0111:UART3-TX
			1000:CPUBISTO	1001:Reserved
			1110:PB-EINT6	1111:IO Disable
			PB5_SELECT	
			PB5 Select	
			0000:Input	0001:Output
22.20	23:20 R/W	0xF	0010:LCD0-D9	0011:I2S2-BCLK
23.20		UAF	0100:TWI1-SDA	0101:PWM0
			0110:LCD0-D21	0111:UART5-RX
			1000:Reserved	1001:Reserved
			1110:PB-EINT5	1111:IO Disable

Offset: 0	Offset: 0x0030		Register Name: PB_CFG0	
Bit	Read/Write	Default/Hex	Description	
			PB4_SELECT PB4 Select	
			0000:Input	0001:Output
19:16	R/W	0xF	0010:LCD0-D8	0011:I2S2-DOUT0
19.10	r, vv	UXF	0100:TWI1-SCK	0101:I2S2-DIN1
			0110:LCD0-D20	0111:UART5-TX
			1000:Reserved	1001:Reserved
			1110:PB-EINT4	1111:IO Disable
			PB3_SELECT	
			PB3 Select	
		0xF	0000:Input	0001:Output
15:12	R/W		0010:LCD0-D1	0011:I2S2-DOUT1
15.12	r, vv		0100:TWI0-SCK	0101:I2S2-DIN0
			0110:LCD0-D19	0111:UART4-RX
			1000:Reserved	1001:Reserved
			1110:PB-EINT3	1111:IO Disable
			PB2_SELECT	
			PB2 Select	
			0000:Input	0001:Output
11:8	R/W	0xF	0010:LCD0-D0	0011:I2S2-DOUT2
11.0		UXF	0100:TWI0-SDA	0101:I2S2-DIN2
			0110:LCD0-D18	0111:UART4-TX
			1000:Reserved	1001:Reserved
			1110:PB-EINT2	1111:IO Disable
7:4	R/W	0xF	Reserved	
3:0	R/W	OxF	Reserved	

9.7.5.2 0x0034 PB Configure Register 1 (Default Value: 0x000F_FFFF)

Offset: 0x0034			Register Name: PB_CFG1
Bit	Read/Write	Default/Hex	Description
31:20	/	/	/
19:16	R/W	0xF	Reserved
15:12	R/W	0xF	Reserved
11:8	R/W	0xF	Reserved

Offset: 0x0034			Register Name: PB_CFG1
Bit	Read/Write	Default/Hex	Description
7:4	R/W	0xF	Reserved
3:0	R/W	0xF	Reserved

9.7.5.3 0x0040 PB Data Register (Default Value: 0x0000_0000)

Offset: 0x0040			Register Name: PB_DAT	
Bit	Read/Write	Default/Hex	Description	
31:8	/	/	1	
7:0	R/W	0x0	PB_DAT If the port is configured as the input function, the corresponding bit is the pin state. If the port is configured as the output function, the pin state is the same as the corresponding bit. The read bit value is the value set up by software. If the port is configured as a functional pin, the undefined value will be read.	

9.7.5.4 0x0044 PB Multi_Driving Register 0 (Default Value: 0x1111_111)

Offset: 0	Offset: 0x0044		Register Name: PB_DRV0	
Bit	Read/Write	Default/Hex	Description	
31:30	1	/	1	
	P		PB7_DRV	
20.20	R/W	0x1	PB7 Multi_Driving Select	
29:28	K/ W	UXI	00: Level 0	01: Level 1
			10: Level 2	11: Level 3
27:26	/	/	/	
		0x1	PB6_DRV	
25:24	R/W		PB6 Multi_Driving Select	
25.24	r, vv		00: Level 0	01: Level 1
			10: Level 2	11: Level 3
23:22	/	/	/	
			PB5_DRV	
21:20	21:20 R/W	0x1	PB5 Multi_Driving Select	
21.20	1.7		00: Level 0	01: Level 1
			10: Level 2	11: Level 3

Offset: 0x0044		Register Name: PB_DRV0			
Bit	Read/Write	Default/Hex	Description		
19:18	/	/	/		
			PB4_DRV		
17:16	R/W	0x1	PB4 Multi_Driving Select		
17.10		0.11	00: Level 0	01: Level 1	
			10: Level 2	11: Level 3	
15:14	/	/	/		
			PB3_DRV		
13:12	R/W	0x1	PB3 Multi_Driving Select		
15.12	r, vv		00: Level 0	01: Level 1	
			10: Level 2	11: Level 3	
11:10	/	/	/		
			PB2_DRV		
9:8	R/W	0x1	PB2 Multi_Driving Select		
9.0		UXI	00: Level 0	01: Level 1	
			10: Level 2	11: Level 3	
7:6	1		/		
5:4	R/W	0x1	Reserved	P	
3:2	/	1	/		
1:0	R/W	0x1	Reserved		

9.7.5.5 0x0048 PB Multi_Driving Register 1 (Default Value: 0x0001_1111)

Offset: 0	Offset: 0x0048		Register Name: PB_DRV1
Bit	Read/Write	Default/Hex	Description
31:18	1	1	/
17:16	R/W	0x1	Reserved
15:14	/	/	/
13:12	R/W	0x1	Reserved
11:10	/	/	/
9:8	R/W	0x1	Reserved
7:6	/	/	/
5:4	R/W	0x1	Reserved
3:2	/	/	/
1:0	R/W	0x1	Reserved

9.7.5.6 0x0054 PB Pull Register 0 (Default Value: 0x0000_0000)

Offset: 0x0054		Register Name: PB_PULL0		
Bit	Read/Write	Default/Hex	Description	
31:16	/	/	/	
			PB7_PULL	
15:14	R/W	0x0	PB7 Pull_up or down Select	
15.14		0.00	00: Pull_up/down disable	01: Pull_up
			10: Pull_down	11: Reserved
			PB6_PULL	
13:12	R/W	0x0	PB6 Pull_up or down Select	
15.12		0.00	00: Pull_up/down disable	01: Pull_up
			10: Pull_down	11: Reserved
			PB5_PULL	
11:10	R/W	0x0	PB5 Pull_up or down Select	
11.10	N/ VV	UXU	00: Pull_up/down disable	01: Pull_up
			10: Pull_down	11: Reserved
			PB4_PULL	
9:8	R/W	0x0	PB4 Pull_up or down Select	
9.8		0.00	00: Pull_up/down disable	01: Pull_up
			10: Pull_down	11: Reserved
			PB3_PULL	
7:6	R/W	0x0	PB3 Pull_up or down Select	
7.0		0x0	00: Pull_up/down disable	01: Pull_up
			10: Pull_down	11: Reserved
			PB2_PULL	
5:4	R/W	0x0	PB2 Pull_up or down Select	
J.4	17 17	0.00	00: Pull_up/down disable	01: Pull_up
			10: Pull_down	11: Reserved
3:2	R/W	0x0	Reserved	
1:0	R/W	0x0	Reserved	

9.7.5.7 0x0060 PC Configure Register 0 (Default Value: 0xFFFF_FFF)

Offset: 0x0060			Register Name: PC_CFG0	
Bit	Read/Write	Default/Hex	Description	
31:28	R/W	OxF	PC7_SELECT	
			PC7 Select	
			0000:Input	0001:Output
			0010:SPI0-HOLD	0011:SDC2-D3
			0100:UART3-RX	0101:TWI3-SDA
			0110:TCON-TRIG	0111:Reserved
			1000:Reserved	1001:Reserved
			1110:PC-EINT7	1111:IO Disable
27:24	R/W	OxF	PC6_SELECT	
			PC6 Select	
			0000:Input	0001:Output
			0010:SPI0-WP	0011:SDC2-D0
			0100:UART3-TX	0101:TWI3-SCK
			0110:DBG-CLK	0111:Reserved
			1000:Reserved	1001:Reserved
			1110:PC-EINT6	1111:IO Disable
23:20	R/W	0xF	PC5_SELECT	
			PC5 Select	
			0000:Input	0001:Output
			0010:SPI0-MISO	0011:SDC2-D1
			0100:BOOT-SEL1	0101:Reserved
			0110:Reserved	0111:Reserved
			1000:Reserved	1001:Reserved
			1110:PC-EINT5	1111:IO Disable
19:16	R/W	OxF	PC4_SELECT	
			PC4 Select.	
			0000:Input	0001:Output
			0010:SPIO-MOSI	0011:SDC2-D2
			0100:BOOT-SEL0	0101:Reserved
			0110:Reserved	0111:Reserved
			1000:Reserved	1001:Reserved
			1110:PC-EINT4	1111:IO Disable

Offset: 0	Offset: 0x0060		Register Name: PC_CFG0	
Bit	Read/Write	Default/Hex	Description	
			PC3_SELECT	
			PC3 Select	
			0000:Input	0001:Output
15:12	R/W	0xF	0010:SPI0-CS0	0011:SDC2-CMD
15.12		UXF	0100:Reserved	0101:Reserved
			0110:Reserved	0111:Reserved
			1000:Reserved	1001:Reserved
			1110:PC-EINT3	1111:IO Disable
		OxF	PC2_SELECT	
			PC2 Select	
			0000:Input	0001:Output
11:8	R/W		0010:SPIO-CLK	0011:SDC2-CLK
11.0			0100:Reserved	0101:Reserved
			0110:Reserved	0111:Reserved
			1000:Reserved	1001:Reserved
			1110:PC-EINT2	1111:IO Disable
7:4	R/W	0xF	Reserved	
3:0	R/W	OxF	Reserved	

9.7.5.8 0x0070 PC Data Register (Default Value: 0x0000_0000)

Offset: 0x0070			Register Name: PC_DAT
Bit	Bit Read/Write Default/Hex		Description
31:8	/	1	/
			PC_DAT
7:0	R/W	0x0	If the port is configured as the input function, the corresponding bit is the pin state. If the port is configured as the output function, the pin state is the same as the corresponding bit. The read bit value is the value set up by software. If the port is configured as a functional pin, the undefined value will be read.

9.7.5.9 0x0074 PC Multi_Driving Register 0 (Default Value: 0x1111_111)

Offset: 0	Offset: 0x0074		Register Name: PC_DRV0	
Bit	Read/Write	Default/Hex	Description	
31:30	/	1	/	
			PC7_DRV	
20.20	DAA	01	PC7 Multi_Driving Select	
29:28	R/W	0x1	00: Level 0	01: Level 1
			10: Level 2	11: Level 3
27:26	/	/	/	
			PC6_DRV	
25:24	R/W	0x1	PC6 Multi_Driving Select	
25:24	K/ W	UXI	00: Level 0	01: Level 1
			10: Level 2	11: Level 3
23:22	/	/	/	
			PC5_DRV	
21:20	0 R/W	0x1	PC5 Multi_Driving Select	
21.20		UXI	00: Level 0	01: Level 1
			10: Level 2	11: Level 3
19:18	1	1		
			PC4_DRV	
17:16	R/W	0x1	PC4 Multi_Driving Select	
17.10			00: Level 0	01: Level 1
			10: Level 2	11: Level 3
15:14	/	1	1	
			PC3_DRV	
13:12	R/W	0x1	PC3 Multi_Driving Select	
13.12		UXI	00: Level 0	01: Level 1
			10: Level 2	11: Level 3
11:10	/	/	/	
			PC2_DRV	
Q·8	9:8 R/W	0x1	PC2 Multi_Driving Select	
9.8		UX1	00: Level 0	01: Level 1
			10: Level 2	11: Level 3
7:6	/	/	/	
5:4	R/W	0x1	Reserved	
3:2	1	/	/	
1:0	R/W	0x1	Reserved	

9.7.5.10 0x0084 PC Pull Register 0 (Default Value: 0x0000_0540)

Offset: 0)x0084		Register Name: PC_PULL0	
Bit	Read/Write	Default/Hex	Description	
31:16	/	/	/	
			PC7_PULL	
15:14	R/W	0×0	PC7 Pull_up/down Select	
15.14	r, vv	0x0	00: Pull_up/down disable	01: Pull_up
			10: Pull_down	11: Reserved
			PC6_PULL	
13:12	R/W	0x0	PC6 Pull_up/down Select	
15.12	r/ vv	UXU	00: Pull_up/down disable	01: Pull_up
			10: Pull_down	11: Reserved
			PC5_PULL	
11:10		0x1	PC5 Pull_up/down Select	
11:10	0 R/W		00: Pull_up/down disable	01: Pull_up
			10: Pull_down	11: Reserved
			PC4_PULL	
0.0	D /M	0.1	PC4 Pull_up/down Select	
9:8	R/W	0x1	00: Pull_up/down disable	01: Pull_up
			10: Pull_down	11: Reserved
			PC3_PULL	
7.0	D (M)	01	PC3 Pull_up/down Select	
7:6	R/W	0x1	00: Pull_up/down disable	01: Pull_up
			10: Pull_down	11: Reserved
			PC2_PULL	
E · 4	:4 R/W	0.0	PC2 Pull_up/down Select	
5.4		0x0	00: Pull_up/down disable	01: Pull_up
			10: Pull_down	11: Reserved
3:2	R/W	0x0	Reserved	
1:0	R/W	0x0	Reserved	

9.7.5.11 0x0090 PD Configure Register 0 (Default Value: 0xFFFF_FFF)

Offset: 0)x0090		Register Name: PD_CFG	0
Bit	Read/Write	Default/Hex	Description	
			PD7_SELECT	
			PD7 Select	
			0000:Input	0001:Output
31:28	R/W	0xF	0010:LCD0-D11	0011:LVDS0-CKN
31:28	K/ VV	UXF	0100:DSI-D2N	0101:UART4-TX
			0110:Reserved	0111:Reserved
			1000:Reserved	1001:Reserved
			1110:PD-EINT7	1111:IO Disable
			PD6_SELECT	
			PD6 Select	
			0000:Input	0001:Output
27.24		OVE	0010:LCD0-D10	0011:LVDS0-CKP
27:24	R/W	0xF	0100:DSI-D2P	0101:UART5-RX
			0110:Reserved	0111:Reserved
			1000:Reserved	1001:Reserved
			1110:PD-EINT6	1111:IO Disable
			PD5_SELECT	
			PD5 Select	
		/W OxF	0000:Input	0001:Output
22.20	5.4.4		0010:LCD0-D7	0011:LVDS0-V2N
23:20	K/ VV		0100:DSI-CKN	0101:UART5-TX
			0110:Reserved	0111:Reserved
			1000:Reserved	1001:Reserved
			1110:PD-EINT5	1111:IO Disable
			PD4_SELECT	
			PD4 Select	
			0000:Input	0001:Output
10.10	D /\A/	OVE	0010:LCD0-D6	0011:LVDS0-V2P
19:16	R/W	0xF	0100:DSI-CKP	0101:UART2-CTS
			0110:Reserved	0111:Reserved
			1000:Reserved	1001:Reserved
			1110:PD-EINT4	1111:IO Disable

Offset: 0)x0090		Register Name: PD)_CFG0
Bit	Read/Write	Default/Hex	Description	
			PD3_SELECT	
			PD3 Select	
			0000:Input	0001:Output
15.10	R/W		0010:LCD0-D5	0011:LVDS0-V1N
15:12	r, vv	0xF	0100:DSI-D1N	0101:UART2-RTS
			0110:Reserved	0111:Reserved
			1000:Reserved	1001:Reserved
			1110:PD-EINT3	1111:IO Disable
			PD2_SELECT	
			PD2 Select	
			0000:Input	0001:Output
11:8	R/W	OVE	0010:LCD0-D4	0011:LVDS0-V1P
11:8	K/ VV	0xF	0100:DSI-D1P	0101:UART2-RX
			0110:Reserved	0111:Reserved
			1000:Reserved	1001:Reserved
			1110:PD-EINT2	1111:IO Disable
			PD1_SELECT	
			PD1 Select	
			0000:Input	0001:Output
7:4	R/W	OxF	0010:LCD0-D3	0011:LVDS0-V0N
7.4			0100:DSI-DON	0101:UART2-TX
			0110:Reserved	0111:Reserved
			1000:Reserved	1001:Reserved
			1110:PD-EINT1	1111:IO Disable
			PD0_SELECT	
	R/W (PD0 Select	
			0000:Input	0001:Output
3:0		0xF	0010:LCD0-D2	0011:LVDS0-V0P
5.0			0100:DSI-D0P	0101:TWI0-SCK
			0110:Reserved	0111:Reserved
l			1000:Reserved	1001:Reserved
			1110:PD-EINT0	1111:IO Disable

9.7.5.12 0x0094 PD Configure Register 1 (Default Value: 0xFFFF_FFF)

Offset: 0)x0094		Register Name: PD_CFG1	
Bit	Read/Write	Default/Hex	Description	
			PD15_SELECT	
			PD15 Select	
			0000:Input	0001:Output
31:28	R/W	0xF	0010:LCD0-D21	0011:LVDS1-V2N
51.20	r, vv	UXF	0100:SPI1-WP/DBI-TE	0101:IR-RX
			0110:Reserved	0111:Reserved
			1000:Reserved	1001:Reserved
			1110:PD-EINT15	1111:IO Disable
			PD14_SELECT	
			PD14 Select	
			0000:Input	0001:Output
27.24		OVE	0010:LCD0-D20	0011:LVDS1-V2P
27:24	27:24 R/W	0xF	0100:SPI1-HOLD/DBI-DCX/DBI-W	VRX 0101:UART3-CTS
			0110:Reserved	0111:Reserved
			1000:Reserved	1001:Reserved
			1110:PD-EINT14	1111:IO Disable
			PD13_SELECT	
			PD13 Select	
		OxF	0000:Input	0001:Output
23:20	R/W		0010:LCD0-D19	0011:LVDS1-V1N
23.20			0100:SPI1-MISO/DBI-SDI/DBI-TE,	/DBI-DCX 0101:UART3-RTS
			0110:Reserved	0111:Reserved
			1000:Reserved	1001:Reserved
			1110:PD-EINT13	1111:IO Disable
			PD12_SELECT	
			PD12 Select	
19:16	R/W	Q.F.	0000:Input (0001:Output
			0010:LCD0-D18 0	0011:LVDS1-V1P
19.10		0xF	0100:SPI1-MOSI/DBI-SDO	D101:TWIO-SDA
			0110:Reserved	0111:Reserved
			1000:Reserved	1001:Reserved
			1110:PD-EINT12	1111:IO Disable

Offset: 0)x0094		Register Name: PD_CFG1	
Bit	Read/Write	Default/Hex	Description	
			PD11_SELECT	
			PD11 Select	
			0000:Input	0001:Output
15:12	R/W	0xF	0010:LCD0-D15	0011:LVDS1-V0N
15.12	r, vv	UXF	0100:SPI1-CLK/DBI-SCLK	0101:UART3-RX
			0110:Reserved	0111:Reserved
			1000:Reserved	1001:Reserved
			1110:PD-EINT11	1111:IO Disable
			PD10_SELECT	
			PD10 Select	
			0000:Input	0001:Output
11.0	R/W		0010:LCD0-D14	0011:LVDS1-V0P
11:8	K/ VV	0xF	0100:SPI1-CS/DBI-CSX	0101:UART3-TX
			0110:Reserved	0111:Reserved
			1000:Reserved	1001:Reserved
			1110:PD-EINT10	1111:IO Disable
			PD9_SELECT	
			PD9 Select	
			0000:Input	0001:Output
7:4	R/W	OxF	0010:LCD0-D13	0011:LVDS0-V3N
7.4			0100:DSI-D3N	0101:PWM6
			0110:Reserved	0111:Reserved
			1000:Reserved	1001:Reserved
			1110:PD-EINT9	1111:IO Disable
			PD8_SELECT	
	R/W 0xF		PD8 Select	
			0000:Input	0001:Output
3:0		0xF	0010:LCD0-D12	0011:LVDS0-V3P
5.0			0100:DSI-D3P	0101:UART4-RX
			0110:Reserved	0111:Reserved
			1000:Reserved	1001:Reserved
			1110:PD-EINT8	1111:IO Disable

9.7.5.13 0x0098 PD Configure Register 2 (Default Value: 0x0FFF_FFF)

Offset: 0	Offset: 0x0098		Register Name: PD_C	CFG2
Bit	Read/Write	Default/Hex	Description	
31:28	/	/	/	
			PD22_SELECT	
			PD22 Select	
			0000:Input	0001:Output
27.24	DAA	0	0010:OWA-OUT	0011:IR-RX
27:24	R/W	0xF	0100:UART1-RX	0101:PWM7
			0110:Reserved	0111:Reserved
			1000:Reserved	1001:Reserved
			1110:PD-EINT22	1111:IO Disable
			PD21_SELECT	
			PD21 Select	
			0000:Input	0001:Output
23:20	R/W	OxF	0010:LCD0-VSYNC	0011:TWI2-SDA
25.20	N/ VV	UXF	0100:UART1-TX	0101:PWM5
			0110:Reserved	0111:Reserved
			1000:Reserved	1001:Reserved
			1110:PD-EINT21	1111:IO Disable
			PD20_SELECT	
			PD20 Select	
		0xF	0000:Input	0001:Output
19:16	R/W		0010:LCD0-HSYNC	0011:TWI2-SCK
10.10	,	0,11	0100:DMIC-CLK	0101:PWM4
			0110:Reserved	0111:Reserved
			1000:Reserved	1001:Reserved
			1110:PD-EINT20	1111:IO Disable
			PD19_SELECT	
			PD19 Select	
			0000:Input	0001:Output
15:12	R/W	0xF	0010:LCD0-DE	0011:LVDS1-V3N
			0100:DMIC-DATA0	0101:PWM3
			0110:Reserved	0111:Reserved
			1000:Reserved	1001:Reserved
			1110:PD-EINT19	1111:IO Disable

Offset: 0x0098			Register Name: PD_CFG2	
Bit	Read/Write	Default/Hex	Description	
			PD18_SELECT	
			PD18 Select	
			0000:Input	0001:Output
11:8	R/W	0xF	0010:LCD0-CLK	0011:LVDS1-V3P
11.0	r, vv	UXF	0100:DMIC-DATA1	0101:PWM2
			0110:Reserved	0111:Reserved
			1000:Reserved	1001:Reserved
			1110:PD-EINT18	1111:IO Disable
		PD17_SELECT		
		0xF	PD17 Select.	
			0000:Input	0001:Output
7.4	DAA		0010:LCD0-D23	0011:LVDS1-CKN
7:4	R/W		0100:DMIC-DATA2	0101:PWM1
			0110:Reserved	0111:Reserved
			1000:Reserved	1001:Reserved
			1110:PD-EINT17	1111:IO Disable
			PD16_SELECT	
			PD16 Select	
			0000:Input	0001:Output
2.0	DAA	0.15	0010:LCD0-D22	0011:LVDS1-CKP
3:0 R/W	R/ W	OxF	0100:DMIC-DATA3	0101:PWM0
		0110:Reserved	0111:Reserved	
			1000:Reserved	1001:Reserved
			1110:PD-EINT16	1111:IO Disable

9.7.5.14 0x00A0 PD Data Register (Default Value: 0x0000_0000)

Offset: 0	Offset: 0x00A0		Register Name: PD_DAT
Bit	Read/Write	Default/Hex	Description
31:23	/	/	/

Offset: 0x00A0			Register Name: PD_DAT
Bit	Read/Write Default/Hex		Description
	22:0 R/W 0x0	PD_DAT	
		0x0	PD Data
			If the port is configured as the input function, the corresponding
22:0			bit is the pin state. If the port is configured as the output function,
		the pin state is the same as the corresponding bit. The read bit	
			value is the value set up by software. If the port is configured as
			a functional pin, the undefined value will be read.

9.7.5.15 0x00A4 PD Multi_Driving Register 0 (Default Value: 0x1111_1111)

Offset: 0	Offset: 0x00A4		Register Name: PD_DRV0	
Bit	Read/Write	Default/Hex	Description	
31:30	/	/	/	
			PD7_DRV	
29:28	R/W	0x1	PD7 Multi_Driving Select.	
29.20		0.01	00: Level 0	01: Level 1
			10: Level 2	11: Level 3
27:26	1	/	1	
			PD6_DRV	
25:24	R/W	0x1	PD6 Multi_Driving Select.	
23.24	K/ VV	UXI	00: Level 0	01: Level 1
			10: Level 2	11: Level 3
23:22	/	1	1	
			PD5_DRV	
21:20	R/W	0x1	PD5 Multi_Driving Select.	
21.20		0/1	00: Level 0	01: Level 1
			10: Level 2	11: Level 3
19:18	/	/	/	
			PD4_DRV	
17.16	17:16 R/W	0x1	PD4 Multi_Driving Select.	
17.10		0/1	00: Level 0	01: Level 1
			10: Level 2	11: Level 3
15:14	/	/	/	

Offset: 0	Offset: 0x00A4		Register Name: PD_DRV0	
Bit	Read/Write	Default/Hex	Description	
			PD3_DRV	
13:12	R/W	0x1	PD3 Multi_Driving Select.	
13.12		0.01	00: Level 0	01: Level 1
			10: Level 2	11: Level 3
11:10	/	/	/	
			PD2_DRV	
0.0	DAA	01	PD2 Multi_Driving Select.	
9:8	9:8 R/W	0x1	00: Level 0	01: Level 1
			10: Level 2	11: Level 3
7:6	/	/	/	
			PD1_DRV	
5:4	R/W	0x1	PD1 Multi_Driving Select.	
5.4	r/ vv	UXI	00: Level 0	01: Level 1
			10: Level 2	11: Level 3
3:2	1	1	1	
			PD0_DRV	
10	P (1) (0~1	PD0 Multi_Driving Select.	P
1:0	R/W	0x1	00: Level 0	01: Level 1
			10: Level 2	11: Level 3

9.7.5.16 0x00A8 PD Multi_Driving Register 1 (Default Value: 0x1111_111)

Offset: 0x00A8		Register Name: PD_DRV1		
Bit	Read/Write	Default/Hex	Description	
31:30	1	1	/	
			PD15_DRV	
29:28	R/W	0x1	PD15 Multi_Driving Select.	
29.20	r/ vv	UXI	00: Level 0	01: Level 1
			10: Level 2	11: Level 3
27:26	/	/	/	
			PD14_DRV	
25:24	R/W	0x1	PD14 Multi_Driving Select.	
23.24		UXI	00: Level 0	01: Level 1
			10: Level 2	11: Level 3
23:22	/	/	/	

Offset: 0	Offset: 0x00A8		Register Name: PD_DRV1	
Bit	Read/Write	Default/Hex	Description	
			PD13_DRV	
21:20	R/W	0x1	PD13 Multi_Driving Select.	
21.20		0,1	00: Level 0	01: Level 1
			10: Level 2	11: Level 3
19:18	/	/	/	
			PD12_DRV	
17:16	R/W	0x1	PD12 Multi_Driving Select.	
17.10		0.11	00: Level 0	01: Level 1
			10: Level 2	11: Level 3
15:14	/	/	/	
			PD11_DRV	
13:12	D /\\/	0x1	PD11 Multi_Driving Select.	
13.12	12 R/W		00: Level 0	01: Level 1
			10: Level 2	11: Level 3
11:10	1	/	1	
			PD10_DRV	
9:8	R/W	0x1	PD10 Multi_Driving Select.	
5.0			00: Level 0	01: Level 1
			10: Level 2	11: Level 3
7:6	/		1	
			PD9_DRV	
5:4	R/W	0x1	PD9 Multi_Driving Select.	
5.4	R/W	0,1	00: Level 0	01: Level 1
			10: Level 2	11: Level 3
3:2	/	1	/	
			PD8_DRV	
1:0	R/W	0x1	PD8 Multi_Driving Select.	
1.0		0/1	00: Level 0	01: Level 1
			10: Level 2	11: Level 3

9.7.5.17 0x00AC PD Multi_Driving Register 2 (Default Value: 0x0111_1111)

Offset: 0x00AC			Register Name: PD_DRV2
Bit	Read/Write	Default/Hex	Description
31:26	/	/	/

Offset: 0	Offset: 0x00AC		Register Name: PD_DRV2	
Bit	Read/Write	Default/Hex	Description	
			PD22_DRV	
25.24	25:24 R/W	01	PD22 Multi_Driving Select.	
25:24		0x1	00: Level 0	01: Level 1
			10: Level 2	11: Level 3
23:22	/	/	/	
			PD21_DRV	
21:20		0x1	PD21 Multi_Driving Select.	
21:20	R/W	UXI	00: Level 0	01: Level 1
			10: Level 2	11: Level 3
19:18	/	/	/	
			PD20_DRV	
17.10	DAA	01	PD20 Multi_Driving Select.	
17:16	R/W	0x1	00: Level 0	01: Level 1
			10: Level 2	11: Level 3
15:14	/	/	1	
			PD19_DRV	
12.12	D hu		PD19 Multi_Driving Select.	
13:12	R/W	0x1	00: Level 0	01: Level 1
			10: Level 2	11: Level 3
11:10	/		1	
			PD18_DRV	
9:8	R/W	0x1	PD18 Multi_Driving Select.	
9.8		UXI	00: Level 0	01: Level 1
			10: Level 2	11: Level 3
7:6	/	1	/	
			PD17_DRV	
5:4	D/14/	0x1	PD17 Multi_Driving Select.	
5:4	1 R/W	UXI	00: Level 0	01: Level 1
			10: Level 2	11: Level 3
3:2	/	/	/	
			PD16_DRV	
1.0	D /\\/	0v1	PD16 Multi_Driving Select.	
1:0	R/W	0x1	00: Level 0	01: Level 1
			10: Level 2	11: Level 3

9.7.5.18 0x00B4 PD Pull Register 0 (Default Value: 0x0000_0000)

Offset: 0x00B4		Register Name: PD_PULL0		
Bit	Read/Write	Default/Hex	Description	
	31:30 R/W		PD15_PULL	
31.30		0x0	PD15 Pull_up or down Selec	t.
51.50		0.00	00: Pull_up/down disable	01: Pull_up
			10: Pull_down	11: Reserved
			PD14_PULL	
29:28	R/W	0x0	PD14 Pull_up or down Selec	t.
29.20		0.00	00: Pull_up/down disable	01: Pull_up
			10: Pull_down	11: Reserved
			PD13_PULL	
27.26	R/W	0.0	PD13 Pull_up or down Selec	t. 👘
27:26	K/ W	0x0	00: Pull_up/down disable	01: Pull_up
			10: Pull_down	11: Reserved
			PD12_PULL	
25.24	25:24 R/W	0x0	PD12 Pull_up or down Select.	
25:24			00: Pull_up/down disable	01: Pull_up
			10: Pull_down	11: Reserved
			PD11_PULL	
23:22	R/W	0x0	PD11 Pull_up or down Selec	t.
23.22	r/ vv	UXU	00: Pull_up/down disable	01: Pull_up
	_		10: Pull_down	11: Reserved
			PD10_PULL	
21:20	R/W	0x0	PD10 Pull_up or down Selec	t.
21.20	r/ vv	0x0	00: Pull_up/down disable	01: Pull_up
			10: Pull_down	11: Reserved
			PD9_PULL	
10.10		0.00	PD9 Pull_up or down Select	
19:18 R/W	0x0	00: Pull_up/down disable	01: Pull_up	
			10: Pull_down	11: Reserved
			PD8_PULL	
17.10		0.00	PD8 Pull_up or down Select	
17:16	R/W	0x0	00: Pull_up/down disable	01: Pull_up
			10: Pull_down	11: Reserved

Offset:	Dx00B4		Register Name: PD_PULL0	
Bit	Read/Write	Default/Hex	Description	
15.14 0/04		PD7_PULL PD7 Pull_up or down Select.		
15:14	R/W	0x0	00: Pull_up/down disable	01: Pull_up
			10: Pull_down	11: Reserved
			PD6_PULL	
13:12	R/W	0x0	PD6 Pull_up or down Select.	
10.12		UNU	00: Pull_up/down disable	01: Pull_up
			10: Pull_down	11: Reserved
			PD5_PULL	
	5.444		PD5 Pull_up or down Select.	
11:10	R/W	0x0	00: Pull_up/down disable	01: Pull_up
			10: Pull_down	11: Reserved
-			PD4_PULL	
	9:8 R/W	0x0	PD4 Pull_up or down Select.	
9:8			00: Pull_up/down disable	01: Pull_up
			10: Pull_down	11: Reserved
-			PD3_PULL	
			PD3 Pull_up or down Select.	
7:6	R/W	0x0	00: Pull_up/down disable	01: Pull_up
			10: Pull_down	11: Reserved
			PD2_PULL	
			PD2 Pull_up or down Select.	
5:4	R/W	0x0	00: Pull_up/down disable	01: Pull_up
			10: Pull_down	11: Reserved
			PD1_PULL	
	2 /14/		PD1 Pull_up or down Select.	
3:2	R/W	0x0	00: Pull_up/down disable	01: Pull_up
			10: Pull_down	11: Reserved
			PD0_PULL	
	- 6.5		PD0 Pull_up or down Select.	
1:0	R/W	0x0	00: Pull_up/down disable	01: Pull_up
			10: Pull_down	11: Reserved
L	I	1	1	

9.7.5.19 0x00B8 PD Pull Register 1 (Default Value: 0x0000_0000)

Offset: 0x00B8		Register Name: PD_PULL1		
Bit	Read/Write	Default/Hex	Description	
31:14	/	/	/	
			PD22_PULL	
13:12	2 R/W	0x0	PD22 Pull_up or down Selec	t.
13.12		0.00	00: Pull_up/down disable	01: Pull_up
			10: Pull_down	11: Reserved
			PD21_PULL	
11:10	R/W	0x0	PD21 Pull_up or down Selec	t.
11.10		0,0	00: Pull_up/down disable	01: Pull_up
			10: Pull_down	11: Reserved
			PD20_PULL	
9:8	R/W	0x0	PD20 Pull_up or down Selec	t.
5.0	R/W		00: Pull_up/down disable	01: Pull_up
			10: Pull_down	11: Reserved
			PD19_PULL	
7:6	R/W	0x0	PD19 Pull_up or down Selec	t.
7.0			00: Pull_up/down disable	01: Pull_up
			10: Pull_down	11: Reserved
			PD18_PULL	
5:4	R/W	0x0	PD18 Pull_up or down Selec	t.
5.1	,	ond of the	00: Pull_up/down disable	01: Pull_up
			10: Pull_down	11: Reserved
			PD17_PULL	
3:2	R/W	0x0	PD17 Pull_up or down Selec	t.
			00: Pull_up/down disable	01: Pull_up
			10: Pull_down	11: Reserved
			PD16_PULL	
1:0	R/W	0x0	PD16 Pull_up or down Selec	
			00: Pull_up/down disable	01: Pull_up
			10: Pull_down	11: Reserved

9.7.5.20 0x00C0 PE Configure Register 0 (Default Value: 0xFFFF_FFF)

Offset: 0	Offset: 0x00C0		Register Name: PE_CFG0	
Bit	Read/Write	Default/Hex	Description	
			PE7_SELECT	
			PE7 Select	
			0000:Input	0001:Output
21.20		0xF	0010:NCSI0-D3	0011:UART5-RX
31:28	R/W	UXF	0100:TWI3-SDA	0101:OWA-OUT
			0110:Reserved	0111:R-JTAG-CK
			1000:RGMII-CLKIN/RMII-RXER	1001:Reserved
			1110:PE-EINT7	1111:IO Disable
			PE6_SELECT	
			PE6 Select	
			0000:Input	0001:Output
27.24			0010:NCSI0-D2	0011:UART5-TX
27:24	R/W	0xF	0100:TWI3-SCK	0101:OWA-IN
			0110:Reserved	0111:R-JTAG-DO
			1000:RMII-TXCTRL/RMII-TXEN	1001:Reserved
			1110:PE-EINT6	1111:IO Disable
			PE5_SELECT	
			PE5 Select	
			0000:Input	0001:Output
23:20	R/W	0xF	0010:NCSI0-D1	0011:UART4-RX
23.20			0100:TWI2-SDA	0101:LEDC-DO
			0110:Reserved	0111:R-JTAG-DI
			1000:RGMII-TXD1/RMII-TXD1	1001:Reserved
			1110:PE-EINT5	1111:IO Disable
			PE4_SELECT	
			PE4 Select	
19:16 I			0000:Input	0001:Output
	R/W	0xF	0010:NCSI0-D0	0011:UART4-TX
	17 17	UAF	0100:TWI2-SCK	0101:CLK-FANOUT2
			0110:Reserved	0111:R-JTAG-MS
			1000:RGMII-TXD0/RMII-TXD0	1001:Reserved
			1110:PE-EINT4	1111:IO Disable

Offset: 0	Offset: 0x00C0		Register Name: PE_CFG0	
Bit	Read/Write	Default/Hex	Description	
			PE3_SELECT PE3 Select	
			0000:Input	0001:Output
45.42	DAM	0.5	0010:NCSIO-MCLK	0011:UART2-RX
15:12	R/W	0xF	0100:TWI0-SDA	0101:CLK-FANOUT1
			0110:UARTO-RX	0111:Reserved
			1000:RGMII-TXCK/RMII-TXCK	1001:Reserved
			1110:PE-EINT3	1111:IO Disable
			PE2_SELECT	
			PE2 Select	
			0000:Input	0001:Output
	5.000		0010:NCSI0-PCLK	0011:UART2-TX
11:8	R/W	OxF	0100:TWI0-SCK	0101:CLK-FANOUT0
			0110:UARTO-TX	0111:Reserved
			1000:RGMII-RXD1/RMII-RXD1	1001:Reserved
			1110:PE-EINT2	1111:IO Disable
			PE1_SELECT	
			PE1 Select	
			0000:Input	0001:Output
	5.644		0010:NCSI0-VSYNC	0011:UART2-CTS
7:4	R/W	0xF	0100:TWI1-SDA	0101:LCD0-VSYNC
			0110:Reserved	0111:Reserved
			1000:RGMII-RXD0/RMII-RXD0	1001:Reserved
			1110:PE-EINT1	1111:IO Disable
			PE0_SELECT	
			PE0 Select	
			0000:Input	0001:Output
2.0	D (M)	OVE	0010:NCSI0-HSYNC	0011:UART2-RTS
3:0	R/W	0xF	0100:TWI1-SCK	0101:LCD0-HSYNC
			0110:Reserved	0111:Reserved
			1000:RGMII-RXCTRL/RMII-CRS-	DV 1001:Reserved
			1110:PE-EINT0	1111:IO Disable

9.7.5.21 0x00C4 PE Configure Register 1 (Default Value: 0xFFFF_FFF)

Offset: 0x00C4		Register Name: PE_CFG1		
Bit	Read/Write	Default/Hex	Description	
31:28	R/W	0xF	Reserved	
27:24	R/W	0xF	Reserved	
			PE13_SELECT	
			PE13 Select	
			0000:Input	0001:Output
	5 / 1 /		0010:TWI2-SDA	0011:PWM5
23:20	R/W	0xF	0100:Reserved	0101:Reserved
			0110:DMIC-DATA3	0111:Reserved
			1000:RGMII-RXD2	1001:Reserved
			1110:PE-EINT13	1111:IO Disable
			PE12_SELECT	
			PE12 Select	
			0000:Input	0001:Output
		OxF	0010:TWI2-SCK	0011:NCSIO-FIELD
19:16	.6 R/W		0100:Reserved	0101:Reserved
			0110:Reserved	0111:Reserved
			1000:RGMII-TXD3	1001:Reserved
			1110:PE-EINT12	1111:IO Disable
			PE11_SELECT	
	- 10		PE11 Select	
			0000:Input	0001:Output
15.10			0010:NCSI0-D7	0011:UART1-RX
15:12	R/W	0xF	0100:Reserved	0101:Reserved
			0110:Reserved	0111:Reserved
			1000:RGMII-TXD2	1001:Reserved
			1110:PE-EINT11	1111:IO Disable
			PE10_SELECT	
	11:8 R/W		PE10 Select	
			0000:Input	0001:Output
11.0		<u>олг</u>	0010:NCSI0-D6	0011:UART1-TX
11:8		0xF	0100:PWM4	0101:IR-RX
			0110:Reserved	0111:Reserved
			1000:EPHY-25M	1001:Reserved
			1110:PE-EINT10	1111:IO Disable

Offset: 0	Offset: 0x00C4		Register Name: PE_CFG1	
Bit	Read/Write	Default/Hex	Description	
			PE9_SELECT	
			PE9 Select	
			0000:Input	0001:Output
7:4	R/W	0xF	0010:NCSI0-D5	0011:UART1-CTS
7.4		UXF	0100:PWM3	0101:UART3-RX
			0110:Reserved	0111:Reserved
			1000:MDIO	1001:Reserved
			1110:PE-EINT9	1111:IO Disable
			PE8_SELECT	
		0xF	PE8 Select	
			0000:Input	0001:Output
3:0	R/W		0010:NCSI0-D4	0011:UART1-RTS
3:0	r, vv		0100:PWM_2	0101:UART3-TX
			0110:Reserved	0111:Reserved
			1000:MDC	1001:Reserved
			1110:PE_EINT8	1111:IO Disable

9.7.5.22 0x00D0 PE Data Register (Default Value: 0x0000_0000)

Offset: 0x00D0			Register Name: PE_DAT
Bit	Read/Write	Default/Hex	Description
31:14	/	1	1
			PE_DAT
			PE Data
			If the port is configured as input, the corresponding bit is the pin
13:0	R/W	0x0	state. If the port is configured as output, the pin state is the same
			as the corresponding bit. The read bit value is the value setup by
			software. If the port is configured as functional pin, the
			undefined value will be read.

9.7.5.23 0x00D4 PE Multi_Driving Register 0 (Default Value: 0x1111_111)

Offset: 0	Offset: 0x00D4		Register Name: PE_DRV0	
Bit	Read/Write	Default/Hex	Description	
31:30	/	/	/	
			PE7_DRV	
20.20	5 / 1 /		PE7 Multi_Driving Select	
29:28	R/W	0x1	00: Level 0	01: Level 1
			10: Level 2	11: Level 3
27:26	/	/	/	
			PE6_DRV	
25:24		01	PE6 Multi_Driving Select	
25:24	R/W	0x1	00: Level 0	01: Level 1
			10: Level 2	11: Level 3
23:22	/	/	/	
			PE5_DRV	
21:20	R/W	0x1	PE5 Multi_Driving Select	
21.20	ny vv		00: Level 0	01: Level 1
			10: Level 2	11: Level 3
19:18	1	1		
			PE4_DRV	
17:16	R/W	0x1	PE4 Multi_Driving Select	
17.10			00: Level 0	01: Level 1
			10: Level 2	11: Level 3
15:14	/	/	1	
			PE3_DRV	
13:12	R/W	0x1	PE3 Multi_Driving Select	
13.12		UX1	00: Level 0	01: Level 1
			10: Level 2	11: Level 3
11:10	/	/	/	
			PE2_DRV	
9:8	R/W	0x1	PE2 Multi_Driving Select	
5.0			00: Level 0	01: Level 1
			10: Level 2	11: Level 3
7:6	/	/	/	

Offset: 0	Offset: 0x00D4		Register Name: PE_DRV0		
Bit	Read/Write	Default/Hex	Description		
			PE1_DRV		
5:4	R/W	0.1	PE1 Multi_Driving Select		
5.4	r, vv	0x1	00: Level 0	01: Level 1	
			10: Level 2	11: Level 3	
3:2	/	/	/		
			PE0_DRV		
1.0	0 R/W 0x1	0.1	PE0 Multi_Driving Select		
1:0		UXI	00: Level 0	01: Level 1	
			10: Level 2	11: Level 3	

9.7.5.24 0x00D8 PE Multi_Driving Register 1 (Default Value: 0x1111_1111)

Offset: 0	Offset: 0x00D8		Register Name: PE_DRV1	
Bit	Read/Write	Default/Hex	Description	
31:30	1	1	1	
29:28	R/W	0x1	Reserved	
27:26	1	1	/	
25:24	R/W	0x1	Reserved	
23:22	/	\boldsymbol{F}	1	
			PE13_DRV	
21:20	R/W	0x1	PE13 Multi_Driving Select	
21.20		UXI	00: Level 0	01: Level 1
			10: Level 2	11: Level 3
19:18	1	1	/	
			PE12_DRV	
17:16	R/W	0x1	PE12 Multi_Driving Select	
17.10	r, vv	UXI	00: Level 0	01: Level 1
			10: Level 2	11: Level 3
15:14	/	/	/	
			PE11_DRV	
13:12	13:12 R/W	0x1	PE11 Multi_Driving Select	
15.12	r, vv	UXI	00: Level 0	01: Level 1
			10: Level 2	11: Level 3
11:10	/	/	/	

Offset	Offset: 0x00D8		Register Name: PE_DRV1		
Bit	Read/Write	Default/Hex	Description		
			PE10_DRV		
9:8		0x1	PE10 Multi_Driving Select		
9.8	R/W	UXI	00: Level 0	01: Level 1	
			10: Level 2	11: Level 3	
7:6	/	/	/		
			PE9_DRV		
F . 4	D /M	0x1	PE9 Multi_Driving Select		
5:4	:4 R/W		00: Level 0	01: Level 1	
			10: Level 2	11: Level 3	
3:2	/	/	/		
			PE8_DRV		
1.0		01	PE8 Multi_Driving Select		
1:0	R/W	0x1	00: Level 0	01: Level 1	
			10: Level 2	11: Level 3	
)x00E4 F	x00E4 PE Pull Register 0 (Default Value: 0x0000_0000)				

9.7.5.25 0x00E4 PE Pull Register 0 (Default Value: 0x0000_0000)

-

Offset: 0	x00E4		Register Name: PE_PULL0		
Bit	Read/Write	Default/Hex	Description		
31:30	R/W	0x0	Reserved		
29:28	R/W	0x0	Reserved		
			PE13_PULL		
27:26	R/W 0x0		PE13 Pull_up or down Select	t	
27.20	r, vv	0x0	00: Pull_up/down disable	01: Pull_up	
			10: Pull_down	11: Reserved	
			PE12_PULL		
25:24	R/W	0x0	PE12 Pull_up or down Select	t	
25.24	r, vv	0.00	00: Pull_up/down disable	01: Pull_up	
			10: Pull_down	11: Reserved	
			PE11_PULL		
23:22	R/W		PE11 Pull_up or down Select		
23.22	rj vv	0x0	00: Pull_up/down disable	01: Pull_up	
			10: Pull_down	11: Reserved	

Offset: 0	Offset: 0x00E4		Register Name: PE_PULL0		
Bit	Read/Write	Default/Hex	Description		
			PE10_PULL		
21:20 R/W	D (M)	00	PE10 Pull_up or down Select	t	
21:20	R/ W	0x0	00: Pull_up/down disable	01: Pull_up	
			10: Pull_down	11: Reserved	
			PE9_PULL		
19:18	R/W	0x0	PE9 Pull_up or down Select		
19.10	r, vv	0.00	00: Pull_up/down disable	01: Pull_up	
			10: Pull_down	11: Reserved	
			PE8_PULL		
17:16	D /\\/	0x0	PE8 Pull_up or down Select		
17.10	R/W	UXU	00: Pull_up/down disable	01: Pull_up	
			10: Pull_down	11: Reserved	
			PE7_PULL		
15:14	D /\\/	0x0	PE7 Pull_up or down Select		
15.14	:14 R/W		00: Pull_up/down disable	01: Pull_up	
			10: Pull_down	11: Reserved	
		0x0	PE6_PULL		
13:12	R/W		PE6 Pull_up or down Select		
15.12			00: Pull_up/down disable	01: Pull_up	
			10: Pull_down	11: Reserved	
			PE5_PULL		
11:10	R/W	0x0	PE5 Pull_up or down Select		
11.10		0.0	00: Pull_up/down disable	01: Pull_up	
			10: Pull_down	11: Reserved	
			PE4_PULL		
9:8	R/W	0x0	PE4 Pull_up or down Select		
510	.,	UNU	00: Pull_up/down disable	01: Pull_up	
			10: Pull_down	11: Reserved	
			PE3_PULL		
7:6	R/W	0x0	PE3 Pull_up or down Select		
	· \/ VV		00: Pull_up/down disable	01: Pull_up	
			10: Pull_down	11: Reserved	
			PE2_PULL		
5:4	R/W	0x0	PE2 Pull_up or down Select		
	-,		00: Pull_up/down disable	01: Pull_up	
			10: Pull_down	11: Reserved	

Offset: 0x00E4		Register Name: PE_PULL0		
Bit	Read/Write	Default/Hex	Description	
			PE1_PULL	
3:2	D/M/	0x0	PE1 Pull_up or down Select	
5.2	R/W		00: Pull_up/down disable	01: Pull_up
			10: Pull_down	11: Reserved
			PE0_PULL	
1.0	1:0 R/W	0x0	PE0 Pull_up or down Select	
1.0			00: Pull_up/down disable	01: Pull_up
			10: Pull_down	11: Reserved

9.7.5.26 0x00F0 PF Configure Register 0 (Default Value: 0x0FFF_FFFF)

)x00F0 PF	00F0 PF Configure Register 0 (Default Value: 0x0FFF_FFF)				
Offset: 0x00F0		Register Name: PF_CFG0			
Bit	Read/Write	Default/Hex	Description		
31:28	1	1	1		
			PF6_SELECT		
		4	PF6 Select		
			0000:Input	0001:Output	
27.24	D /M	OVE.	0010:Reserved	0011:OWA-OUT	
27:24	R/W	OxF	0100:IR-RX	0101:I2S2-MCLK	
			0110:PWM5	0111:Reserved	
			1000:Reserved	1001:Reserved	
			1110:PF-EINT6	1111:IO Disable	
			PF5_SELECT		
			PF5 Select		
	3:20 R/W	OxF	0000:Input	0001:Output	
22.20			0010:SDC0-D2	0011:Reserved	
25.20			0100:R-JTAG-CK	0101:I2S2-LRCK	
			0110:Reserved	0111:Reserved	
			1000:Reserved	1001:Reserved	
			1110:PF-EINT5	1111:IO Disable	

Offset: 0)x00F0		Register Name: PF_0	CFG0
Bit	Read/Write	Default/Hex	Description	
			PF4_SELECT	
			PF4 Select	
			0000:Input	0001:Output
19:16	R/W	0xF	0010:SDC0-D3	0011:UARTO-RX
19.10		UXF	0100:TWI0-SDA	0101:PWM6
			0110:IR-TX	0111:Reserved
			1000:Reserved	1001:Reserved
			1110:PF-EINT4	1111:IO Disable
			PF3_SELECT	
			PF3 Select	
			0000:Input	0001:Output
15.12	D /M	0	0010:SDC0-CMD	0011:Reserved
15:12	R/W	0xF	0100:R-JTAG-DO	0101:I2S2-BCLK
			0110:Reserved	0111:Reserved
			1000:Reserved	1001:Reserved
			1110:PF-EINT3	1111:IO Disable
			PF2_SELECT	
			PF2 Select	
			0000:Input	0001:Output
11:8	R/W	OxF	0010:SDC0-CLK	0011:UARTO-TX
11.8	r, vv	UXF	0100:TWI0-SCK	0101:LEDC-DO
			0110:OWA-IN	0111:Reserved
			1000:Reserved	1001:Reserved
			1110:PF-EINT2	1111:IO Disable
			PF1_SELECT	
			PF1 Select	
			0000:Input	0001:Output
7:4	R/W	Ove	0010:SDC0-D0	0011:Reserved
/.4		0xF	0100:R-JTAG-DI	0101:I2S2-DOUT0
			0110:I2S2-DIN1	0111:Reserved
			1000:Reserved	1001:Reserved
			1110:PF-EINT1	1111:IO Disable

Confidential

Offset: 0	Offset: 0x00F0		Register Name: PF_CFG0	
Bit	Read/Write	Default/Hex	Description	
			PF0_SELECT	
			PF0 Select	
			0000:Input	0001:Output
2.0	3:0 R/W	0xF	0010:SDC0-D1	0011:Reserved
3:0			0100:R-JTAG-MS	0101:I2S2-DOUT1
			0110:I2S2-DIN0	0111:Reserved
			1000:Reserved	1001:Reserved
			1110:PF-EINTO	1111:IO Disable

9.7.5.27 0x0100 PF Data Register (Default Value: 0x0000_0000)

0x0100 PF	Data Register	(Default Value	: 0x0000_0000)
Offset: 0	x0100		Register Name: PF_DAT
Bit	Read/Write	Default/Hex	Description
31:7	1	1	/
6:0	R/W	0	PF_DAT PF Data If the port is configured as input, the corresponding bit is the pin state. If the port is configured as output, the pin state is the same as the corresponding bit. The read bit value is the value setup by software. If the port is configured as functional pin, the undefined value will be read.

9.7.5.28 0x0104 PF Multi_Driving Register 0 (Default Value: 0x0111_1111)

Offset: 0x0104			Register Name: PF_DRV0	
Bit	Bit Read/Write Default/Hex		Description	
31:26	/	/	/	
		PF6_DRV		
25:24	R/W	0.4	PF6 Multi_Driving Select	
25.24	r, vv	0x1	00: Level 0	01: Level 1
			10: Level 2	11: Level 3
23:22	/	/	/	

Offset: 0	Offset: 0x0104		Register Name: PF_DRV0		
Bit	Read/Write	Default/Hex	Description		
			PF5_DRV		
21.20	21:20 R/W	0x1	PF5 Multi_Driving Select		
21.20		UN1	00: Level 0	01: Level 1	
			10: Level 2	11: Level 3	
19:18	/	/	/		
			PF4_DRV		
17.10	D /M	01	PF4 Multi_Driving Select		
17:16	R/W	0x1	00: Level 0	01: Level 1	
			10: Level 2	11: Level 3	
15:14	/	/	/		
			PF3_DRV		
	- 4		PF3 Multi_Driving Select		
13:12	R/W	0x1	00: Level 0	01: Level 1	
			10: Level 2	11: Level 3	
11:10	/	/	/		
			PF2_DRV		
	P. (1) (PF2 Multi_Driving Select		
9:8	R/W	0x1	00: Level 0	01: Level 1	
			10: Level 2	11: Level 3	
7:6	/		1		
			PF1_DRV		
	- 4		PF1 Multi_Driving Select		
5:4	R/W	0x1	00: Level 0	01: Level 1	
			10: Level 2	11: Level 3	
3:2	/	1	/		
			PF0_DRV		
	D /htt		PF0 Multi_Driving Select		
1:0	R/W 0	0x1	00: Level 0	01: Level 1	
			10: Level 2	11: Level 3	

9.7.5.29 0x0114 PF Pull Register 0 (Default Value: 0x0000_0000)

Offset: 0x0114			Register Name: PF_PULL0
Bit	Read/Write	Default/Hex	Description
31:14	/	/	/

Offset: 0	x0114		Register Name: PF_PULL0	
Bit	Read/Write	Default/Hex	Description	
			PF6_PULL	
13:12	R/W	0x0	PF6 Pull_up or down Select	
15.12	r, vv	UXU	00: Pull_up/down disable	01: Pull_up
			10: Pull_down	11: Reserved
			PF5_PULL	
11:10	R/W	0x0	PF5 Pull_up or down Select	
11.10	r, vv	UXU	00: Pull_up/down disable	01: Pull_up
			10: Pull_down	11: Reserved
			PF4_PULL	
0.9			PF4 Pull_up or down Select	
9:8	R/W	0x0	00: Pull_up/down disable	01: Pull_up
			10: Pull_down	11: Reserved
		0x0	PF3_PULL	
7:6	R/W 0x		PF3 Pull_up or down Select	
7.0			00: Pull_up/down disable	01: Pull_up
			10: Pull_down	11: Reserved
			PF2_PULL	
5:4	R/W	0x0	PF2 Pull_up or down Select	
5.4		UXU	00: Pull_up/down disable	01: Pull_up
			10: Pull_down	11: Reserved
			PF1_PULL	
2.2	D /\A/	0.0	PF1 Pull_up or down Select	
3:2	R/W	0x0	00: Pull_up/down disable	01: Pull_up
			10: Pull_down	11: Reserved
			PF0_PULL	
1.0		0×0	PF0 Pull_up or down Select	
1:0	R/W	0x0	00: Pull_up/down disable	01: Pull_up
			10: Pull_down	11: Reserved

9.7.5.30 0x0120 PG Configure Register 0 (Default Value: 0xFFFF_FFF)

Offset: 0	x0120		Register Name: PG_CFG0	
Bit	Read/Write	Default/Hex	Description	
			PG7_SELECT	
			PG7 Select	
			0000:Input	0001:Output
31:28	R/W	0xF	0010:UART1-RX	0011:TWI2-SDA
51.20	r, vv	UXF	0100:RGMII-TXD3	0101:OWA-IN
			0110:Reserved	0111:Reserved
			1000:Reserved	1001:Reserved
			1110:PG-EINT7	1111:IO Disable
			PG6_SELECT	
			PG6 Select	
			0000:Input	0001:Output
27:24	R/W	0xF	0010:UART1-TX	0011:TWI2-SCK
27.24	r, vv	UXF	0100:RGMII-TXD2	0101:PWM1
			0110:Reserved	0111:Reserved
			1000:Reserved	1001:Reserved
			1110:PG-EINT6	1111:IO Disable
			PG5_SELECT	
			PG5 Select	
			0000:Input	0001:Output
23:20	R/W	0xF	0010:SDC1-D3	0011:UART5-RX
23.20			0100:RGMII-TXD1/RMII-TXD1	0101:PWM4
			0110:Reserved	0111:Reserved
			1000:Reserved	1001:Reserved
			1110:PG-EINT5	1111:IO Disable
			PG4_SELECT	
			PG4 Select	
			0000:Input	0001:Output
19:16	R/W	0	0010:SDC1-D2	0011:UART5-TX
19.10		0xF	0100:RGMII-TXD0/RMII-TXD0	0101:PWM5
			0110:Reserved	0111:Reserved
			1000:Reserved	1001:Reserved
			1110:PG-EINT4	1111:IO Disable

Offset: 0)x0120		Register Name: PG_CFG0	
Bit	Read/Write	Default/Hex	Description	
			PG3_SELECT	
			PG3 Select	
			0000:Input	0001:Output
15:12	R/W	0xF	0010:SDC1-D1	0011:UART3-CTS
15.12	r, vv	UXF	0100:RGMII-TXCK/RMII-TXCK	0101:UART4-RX
			0110:Reserved	0111:Reserved
			1000:Reserved	1001:Reserved
			1110:PG-EINT3	1111:IO Disable
			PG2_SELECT	
			PG2 Select	
			0000:Input	0001:Output
11:8	R/W	0xF	0010:SDC1-D0	0011:UART3-RTS
11.0	r, vv	UXF	0100:RGMII-RXD1/RMII-RXD1	0101:UART4-TX
			0110:Reserved	0111:Reserved
			1000:Reserved	1001:Reserved
			1110:PG-EINT2	1111:IO Disable
			PG1_SELECT	
			PG1 Select	
			0000:Input	0001:Output
7:4	R/W	0xF	0010:SDC1-CMD	0011:UART3-RX
7.4	r, vv	UXF	0100:RGMII-RXD0/RMII-RXD0	0101:PWM6
			0110:Reserved	0111:Reserved
			1000:Reserved	1001:Reserved
			1110:PG-EINT1	1111:IO Disable
			PG0_SELECT	
			PG0 Select	
			0000:Input	0001:Output
2.0	D /\\/	0xF	0010:SDC1-CLK	0011:UART3-TX
3:0	R/W	UXF	0100:RGMII-RXCTRL/RMII-CRS-D	V 0101:PWM7
			0110:Reserved	0111:Reserved
			1000:Reserved	1001:Reserved
			1110:PG-EINT0	1111:IO Disable

9.7.5.31 0x0124 PG Configure Register 1 (Default Value: 0xFFFF_FFF)

Offset: 0	x0124		Register Name: PG_CFG1	
Bit	Read/Write	Default/Hex	Description	
			PG15_SELECT	
			PG15 Select	
			0000:Input	0001:Output
31:28	R/W	0xF	0010:I2S1-DOUT0	0011:TWI2-SDA
51.20	r/ vv	UXF	0100:MDIO	0101:I2S1-DIN1
			0110:SPI0-HOLD	0111:UART1-CTS
			1000:Reserved	1001:Reserved
			1110:PG-EINT15	1111:IO Disable
			PG14_SELECT	
			PG14 Select	
			0000:Input 0	0001:Output
27.24			0010:I2S1-DIN0 0	D011:TWI2-SCK
27:24	R/W	0xF	0100:MDC	0101:I2S1-DOUT1
			0110:SPI0-WP	0111:UART1-RTS
			1000:Reserved	1001:Reserved
			1110:PG-EINT14	1111:IO Disable
			PG13_SELECT	
			PG13 Select.	
			0000:Input	0001:Output
23:20	R/W	0xF	0010:I2S1-BCLK	0011:TWI0-SDA
25.20		UXF	0100:RGMII-CLKIN/RMII-RXER	0101:PWM2
			0110:LEDC-DO	0111:UART1_RX
			1000:Reserved	1001:Reserved
			1110:PG-EINT13	1111:IO Disable
			PG12_SELECT	
			PG12 Select	
			0000:Input	0001:Output
10.10		OVE	0010:I2S1-LRCK	0011:TWI0-SCK
19:16	R/W	0xF	0100:RGMII-TXCTRL/RMII-TXEN	N 0101:CLK-FANOUT2
			0110:PWM0	0111:UART1-TX
			1000:Reserved	1001:Reserved
			1110:PG-EINT12	1111:IO Disable

Offset: 0)x0124		Register Name: PG	_CFG1
Bit	Read/Write	Default/Hex	Description	
			PG11_SELECT	
			PG11 Select	
			0000:Input	0001:Output
15:12	R/W	0xF	0010:I2S1-MCLK	0011:TWI3-SDA
15.12	rj vv	UXF	0100:EPHY-25M	0101:CLK-FANOUT1
			0110:TCON-TRIG	0111:Reserved
			1000:Reserved	1001:Reserved
			1110:PG-EINT11	1111:IO Disable
			PG10_SELECT	
			PG10 Select	
			0000:Input	0001:Output
11.0			0010:PWM3	0011:TWI3-SCK
11:8	R/W	0xF	0100:RGMII-RXCK	0101:CLK-FANOUT0
			0110:IR-RX	0111:Reserved
			1000:Reserved	1001:Reserved
			1110:PG-EINT10	1111:IO Disable
			PG9_SELECT	
			PG9 Select.	
			0000:Input	0001:Output
7:4	R/W	0xF	0010:UART1-CTS	0011:TWI1-SDA
7.4	r, vv	UXF	0100:RGMII-RXD3	0101:UART3-RX
			0110:Reserved	0111:Reserved
			1000:Reserved	1001:Reserved
			1110:PG-EINT9	1111:IO Disable
			PG8_SELECT	
			PG8 Select	
			0000:Input	0001:Output
2.0	D /\\/		0010:UART1-RTS	0011:TWI1-SCK
3:0	R/W	0xF	0100:RGMII-RXD2	0101:UART3-TX
			0110:Reserved	0111:Reserved
			1000:Reserved	1001:Reserved
			1110:PG-EINT8	1111:IO Disable

9.7.5.32 0x0130 PG Data Register (Default Value: 0x0000_0000)

Offset: 0x0130			Register Name: PG_DAT
Bit	Read/Write	Default/Hex	Description
31:16	/	/	/
			PG_DAT
			If the port is configured as the input function, the corresponding
15:0	R/W	0x0	bit is the pin state. If the port is configured as the output
13.0		function, the pin state is the same as the corresponding bit. The	
			read bit value is the value set up by software. If the port is
			configured as a functional pin, the undefined value will be read.

9.7.5.33 0x0134 PG Multi_Driving Register 0 (Default Value: 0x1111_1111)

)x0134 PG	Multi_Driving	Register 0 (Def	ault Value: 0x1111_1111)	-0
Offset: 0	x0134		Register Name: PG_DRV0	
Bit	Read/Write	Default/Hex	Description	
31:30	/	1	1	
			PG7_DRV	
29:28	R/W	0x1	PG7 Multi_Driving Select	
29.28	R/ W	UXI	00: Level 0	01: Level 1
			10: Level 2	11: Level 3
27:26	/	1	1	
			PG6_DRV	
25:24	24 R/W	0x1	PG6 Multi_Driving Select	
23.24			00: Level 0	01: Level 1
			10: Level 2	11: Level 3
23:22	1	1	/	
			PG5_DRV	
21:20	R/W	0x1	PG5 Multi_Driving Select	
21.20		0,11	00: Level 0	01: Level 1
			10: Level 2	11: Level 3
19:18	/	/	/	
			PG4_DRV	
17:16	R/W	0x1	PG4 Multi_Driving Select	
17.10			00: Level 0	01: Level 1
			10: Level 2	11: Level 3
15:14	1	/	/	

9.7.5.34 0x0138 PG Multi_Driving Register 1 (Default Value: 0x1111_111)

Offset: 0>	(0138		Register Name: PG_DRV1	
Bit	Read/Write	Default/Hex	Description	
31:30	1	1	/	
29:28	R/W	0x1	PG15_DRV	
			PG15 Multi_Driving Select	
			00: Level 0	01: Level 1
			10: Level 2	11: Level 3
27:26	/	/	/	
25:24	R/W	0x1	PG14_DRV	
			PG14 Multi_Driving Select	
			00: Level 0	01: Level 1
			10: Level 2	11: Level 3
23:22	/	/	/	

Offset: 0x0138			Register Name: PG_DRV1	
Bit	Read/Write	Default/Hex	Description	
21:20	R/W	0x1	PG13_DRV	
			PG13 Multi_Driving Select	
			00: Level 0	01: Level 1
			10: Level 2	11: Level 3
19:18	/	1	/	
17:16	R/W	0x1	PG12_DRV	
			PG12 Multi_Driving Select	
			00: Level 0	01: Level 1
			10: Level 2	11: Level 3
15:14	/	1	/	
	R/W	0x1	PG11_DRV	
13:12			PG11 Multi_Driving Select	
15.12			00: Level 0	01: Level 1
			10: Level 2	11: Level 3
11:10	1	1	1	
	R/W	0x1	PG10_DRV	
9:8			PG10 Multi_Driving Select	
9:8			00: Level 0	01: Level 1
			10: Level 2	11: Level 3
7:6	/	1	1	
	R/W	0x1	PG9_DRV	
5:4			PG9 Multi_Driving Select	
5.4			00: Level 0	01: Level 1
			10: Level 2	11: Level 3
3:2	/	1	/	
1:0	R/W	0x1	PG8_DRV	
			PG8 Multi_Driving Select	
			00: Level 0	01: Level 1
			10: Level 2	11: Level 3

9.7.5.35 0x0144 PG Pull Register 0 (Default Value: 0x0000_0000)

Offset: 0	(0144		Register Name: PG_PULL0	
Bit	Read/Write	Default/Hex	Description	
			PG15_PULL	
31:30	R/W	0x0	PG15 Pull_up or down Select	t.
31:30	K/ VV	UXU	00: Pull_up/down disable	01: Pull_up
			10: Pull_down	11: Reserved
			PG14_PULL	
29:28	R/W	0x0	PG14 Pull_up or down Select	t.
29.20	r, vv	0.00	00: Pull_up/down disable	01: Pull_up
			10: Pull_down	11: Reserved
			PG13_PULL	
27.26	R/W	0.0	PG13 Pull_up or down Select	L
27:26	K/ W	0x0	00: Pull_up/down disable	01: Pull_up
			10: Pull_down	11: Reserved
		0x0	PG12_PULL	
25.24	R/W		PG12 Pull_up or down Select	t.
25:24	R/W		00: Pull_up/down disable	01: Pull_up
			10: Pull_down	11: Reserved
			PG11_PULL	
23:22	R/W	0x0	PG11 Pull_up or down Select	t.
23.22	R/W	0x0	00: Pull_up/down disable	01: Pull_up
			10: Pull_down	11: Reserved
			PG10_PULL	
21:20	R/W	0x0	PG10 Pull_up or down Select	t.
21.20		0.00	00: Pull_up/down disable	01: Pull_up
			10: Pull_down	11: Reserved
			PG9_PULL	
19:18	R/W	0x0	PG9 Pull_up or down Select.	
19.10		0.0	00: Pull_up/down disable	01: Pull_up
			10: Pull_down	11: Reserved
		0x0	PG8_PULL	
17:16	R/W		PG8 Pull_up or down Select.	
17.10			00: Pull_up/down disable	01: Pull_up
			10: Pull_down	11: Reserved

Offset: 0	x0144		Register Name: PG_PULL0	
Bit	Read/Write	Default/Hex	Description	
			PG7_PULL	
15:14	R/W	0x0	PG7 Pull_up or down Select.	
			00: Pull_up/down disable	01: Pull_up
			10: Pull_down	11: Reserved
			PG6_PULL	
13:12	R/W	0x0	PG6 Pull_up or down Select.	
			00: Pull_up/down disable	01: Pull_up
			10: Pull_down	11: Reserved
			PG5_PULL	
11:10	R/W	0x0	PG5 Pull_up or down Select.	
		UNU	00: Pull_up/down disable	01: Pull_up
			10: Pull_down	11: Reserved
		0x0	PG4_PULL	
9:8	R/W		PG4 Pull_up or down Select.	
5.0			00: Pull_up/down disable	01: Pull_up
			10: Pull_down	11: Reserved
			PG3_PULL	
7:6	R/W	0.0	PG3 Pull_up or down Select.	
7.0	r, v	0x0	00: Pull_up/down disable	01: Pull_up
			10: Pull_down	11: Reserved
			PG2_PULL	
	-		PG2 Pull_up or down Select.	
5:4	R/W	0x0	00: Pull_up/down disable	01: Pull_up
			10: Pull_down	11: Reserved
			PG1_PULL	
2.2	DAA	00	PG1 Pull_up or down Select.	
3:2 F	R/W	0x0	00: Pull_up/down disable	01: Pull_up
			10: Pull_down	11: Reserved
			PG0_PULL	
	- 6 -		PG0 Pull_up or down Select.	
1:0	R/W	0x0	00: Pull_up/down disable	01: Pull_up
			10: Pull_down	11: Reserved
	1	1	—	

9.7.5.36 0x0220 PB External Interrupt Configure Register 0 (Default Value: 0x0000_0000)

Offset: 0x02	20		Register Name:PB_EINT_CFG0
Bit	Read/Write	Default/Hex	Description
			EINT7_CFG
			External INT7 Mode
			0x0: Positive Edge
31:28	R/W	0x0	0x1: Negative Edge
51.20	ny vv	0.00	0x2: High Level
			0x3: Low Level
			0x4: Double Edge (Positive/Negative)
			Others: Reserved
			EINT6_CFG
			External INT6 Mode
			0x0: Positive Edge
27:24	R/W	0v0	Ox1: Negative Edge
27.24	r, vv	0x0	0x2: High Level
			0x3: Low Level
			0x4: Double Edge (Positive/Negative)
			Others: Reserved
			EINT5_CFG
			External INT5 Mode
			0x0: Positive Edge
23:20	R/W	0x0	0x1: Negative Edge
23.20		0.0	0x2: High Level
			0x3: Low Level
			0x4: Double Edge (Positive/Negative)
			Others: Reserved
	and the second second		EINT4_CFG
		0x0	External INT4 Mode
			0x0: Positive Edge
19:16	R/W		0x1: Negative Edge
19.10			0x2: High Level
			0x3: Low Level
			0x4: Double Edge (Positive/Negative)
			Others: Reserved

Offset: 0x0220			Register Name:PB_EINT_CFG0
Bit	Read/Write	Default/Hex	Description
			EINT3_CFG
			External INT3 Mode
			0x0: Positive Edge
15:12	R/W	0x0	0x1: Negative Edge
13.12		0.0	0x2: High Level
			0x3: Low Level
			0x4: Double Edge (Positive/Negative)
			Others: Reserved
			EINT2_CFG
			External INT2 Mode
	R/W	0x0	0x0: Positive Edge
11:8			Ox1: Negative Edge
11.0			0x2: High Level
			0x3: Low Level
			0x4: Double Edge (Positive/Negative)
			Others: Reserved
7:4	R/W	0x0	Reserved
3:0	R/W	0x0	Reserved

9.7.5.37 0x0230 PB External Interrupt Control Register (Default Value: 0x0000_0000)

Ι

Offset: 0x0230			Register Name: PB_EINT_CTL
Bit	Read/Write	Default/Hex	Description
31:8	/	1	/
			EINT7_CTL
7	R/W	0x0	External INT7 Enable
/	r, vv		0: Disable
			1: Enable
		0x0	EINT6_CTL
6	R/W		External INT6 Enable
D	r, vv		0: Disable
			1: Enable

Offset: 0x	0230		Register Name: PB_EINT_CTL
Bit	Read/Write	Default/Hex	Description
			EINT5_CTL
5	R/W	0x0	External INT5 Enable
5		0.0	0: Disable
			1: Enable
			EINT4_CTL
4	R/W	0x0	External INT4 Enable
4		0.00	0: Disable
			1: Enable
			EINT3_CTL
3	R/W	0x0	External INT3 Enable
5		0.00	0: Disable
			1: Enable
			EINT2_CTL
2	R/W	0x0	External INT2 Enable
2			0: Disable
			1: Enable
1	R/W	0x0	Reserved
0	R/W	0x0	Reserved

9.7.5.38 0x0234 PB External Interrupt Status Register (Default Value: 0x0000_0000)

Offset: 0x	0234		Register Name: PB_EINT_STATUS
Bit	Read/Write	Default/Hex	Description
31:8	/	1	/
			EINT7_STATUS
			External INT7 Pending Bit
7	R/W1C	0x0	0: No IRQ pending
			1: IRQ pending
			Write '1' to clear
			EINT6_STATUS
			External INT6 Pending Bit
6	R/W1C	0x0	0: No IRQ pending
			1: IRQ pending
			Write '1' to clear

Offset: 0x	0234		Register Name: PB_EINT_STATUS
Bit	Read/Write	Default/Hex	Description
			EINT5_STATUS
			External INT5 Pending Bit
5	R/W1C	0x0	0: No IRQ pending
			1: IRQ pending
			Write '1' to clear
			EINT4_STATUS
			External INT4 Pending Bit
4	R/W1C	0x0	0: No IRQ pending
			1: IRQ pending
			Write '1' to clear
			EINT3_STATUS
			External INT3 Pending Bit
3	R/W1C	0x0	0: No IRQ pending
			1: IRQ pending
			Write '1' to clear
			EINT2_STATUS
		4	External INT2 Pending Bit
2	R/W1C	0x0	0: No IRQ pending
			1: IRQ pending
			Write '1' to clear
1	R/W	0x0	Reserved
0	R/W	0x0	Reserved

9.7.5.39 0x0238 PB External Interrupt Debounce Register (Default Value: 0x0000_0000)

Offset: 0x0238			Register Name: PB_EINT_DEB
Bit	Read/Write	Default/Hex	Description
31:7	1	/	/
			DEB_CLK_PRE_SCALE
6:4	R/W	0x0	Debounce Clock Pre_scale n
			The selected clock source is prescaled by 2 ⁿ .
3:1	1	1	/

Offset: 0x0238			Register Name: PB_EINT_DEB
Bit	Read/Write	Default/Hex	Description
		0x0	PIO_INT_CLK_SELECT
0	R/W		PIO Interrupt Clock Select
0			0: LOSC 32KHz
			1: HOSC 24MHz

9.7.5.40 0x0240 PC External Interrupt Configure Register 0 (Default Value: 0x0000_0000)

Offset: 0x02	40		Register Name:PC_EINT_CFG0
Bit	Read/Write	Default/Hex	Description
			EINT7_CFG
			External INT7 Mode
			0x0: Positive Edge
31:28	R/W	0x0	Ox1: Negative Edge
51.20	ny vv	UXU	0x2: High Level
			0x3: Low Level
			0x4: Double Edge (Positive/Negative)
			Others: Reserved
			EINT6_CFG
		0x0	External INT6 Mode
			0x0: Positive Edge
27:24	R/W		0x1: Negative Edge
27.24			0x2: High Level
			0x3: Low Level
			0x4: Double Edge (Positive/Negative)
			Others: Reserved
			EINT5_CFG
			External INT5 Mode
			0x0: Positive Edge
23:20	R/W	0x0	Ox1: Negative Edge
23.20	R/ W		0x2: High Level
			0x3: Low Level
			0x4: Double Edge (Positive/Negative)
			Others: Reserved

Offset: 0x02	40		Register Name:PC_EINT_CFG0	
Bit	Read/Write	Default/Hex	Description	
			EINT4_CFG	
			External INT4 Mode	
			0x0: Positive Edge	
19:16	R/W	0x0	Ox1: Negative Edge	
19.10		0.00	0x2: High Level	
			0x3: Low Level	
			0x4: Double Edge (Positive/Negative)	
			Others: Reserved	
			EINT3_CFG	
			External INT3 Mode	
		0x0	0x0: Positive Edge	
15:12	R/W		Ox1: Negative Edge	
15.12	K/ W		0x2: High Level	
			0x3: Low Level	
			0x4: Double Edge (Positive/Negative)	
			Others: Reserved	
			EINT2_CFG	
		0x0	External INT2 Mode	
			0x0: Positive Edge	
11:8	R/W		Ox1: Negative Edge	
11.0			0x2: High Level	
			0x3: Low Level	
			0x4: Double Edge (Positive/Negative)	
			Others: Reserved	
7:4	R/W	0x0	Reserved	
3:0	R/W	0x0	Reserved	

9.7.5.41 0x0250 PC External Interrupt Control Register (Default Value: 0x0000_0000)

Offset: 0x0250			Register Name: PC_EINT_CTL
Bit	Read/Write	Default/Hex	Description
31:8	/	/	/

Offset: 0x	0250		Register Name: PC_EINT_CTL
Bit	Read/Write	Default/Hex	Description
			EINT7_CTL
7		0x0	External INT7 Enable
7	R/W	UXU	0: Disable
			1: Enable
			EINT6_CTL
6	R/W	0x0	External INT6 Enable
D	r, vv	UXU	0: Disable
			1: Enable
			EINT5_CTL
5	R/W	0x0	External INT5 Enable
5		0.00	0: Disable
			1: Enable
			EINT4_CTL
4	R/W	0x0	External INT4 Enable
•			0: Disable
			1: Enable
		4	EINT3_CTL
3	R/W	0x0	External INT3 Enable
		UNU	0: Disable
			1: Enable
			EINT2_CTL
2	R/W	0x0	External INT2 Enable
			0: Disable
			1: Enable
1	R/W	0x0	Reserved
0	R/W	0x0	Reserved

9.7.5.42 0x0254 PC External Interrupt Status Register (Default Value: 0x0000_0000)

Offset: 0x0254			Register Name: PC_EINT_STATUS
Bit	Read/Write	Default/Hex	Description
31:8	/	/	/

Offset: 0x	0254		Register Name: PC_EINT_STATUS
Bit	Read/Write	Default/Hex	Description
			EINT7_STATUS
			External INT7 Pending Bit
7	R/W1C	0x0	0: No IRQ pending
			1: IRQ pending
			Write '1' to clear
			EINT6_STATUS
			External INT6 Pending Bit
6	R/W1C	0x0	0: No IRQ pending
			1: IRQ pending
			Write '1' to clear
			EINT5_STATUS
			External INT5 Pending Bit
5	R/W1C	0x0	0: No IRQ pending
			1: IRQ pending
			Write '1' to clear
			EINT4_STATUS
			External INT4 Pending Bit
4	R/W1C	0x0	0: No IRQ pending
			1: IRQ pending
			Write '1' to clear
			EINT3_STATUS
			External INT3 Pending Bit
3	R/W1C	0x0	0: No IRQ pending
			1: IRQ pending
			Write '1' to clear
			EINT2_STATUS
			External INT2 Pending Bit
2	R/W1C	0x0	0: No IRQ pending
			1: IRQ pending
			Write '1' to clear
1	R/W	0x0	Reserved
0	R/W	0x0	Reserved

9.7.5.43 0x0258 PC External Interrupt Debounce Register (Default Value: 0x0000_0000)

Offset: 0x0258			Register Name: PC_EINT_DEB	
Bit	Read/Write	Default/Hex	Description	
31:7	/	/	/	
			DEB_CLK_PRE_SCALE	
6:4	R/W	0x0	Debounce Clock Pre_scale n	
			The selected clock source is prescaled by 2^n.	
3:1	/	/	/	
		0x0	PIO_INT_CLK_SELECT	
	R/W		PIO Interrupt Clock Select	
0			0: LOSC 32KHz	
			1: HOSC 24MHz	
0x0260 PD External Interrupt Configure Register 0 (Default Value: 0x0000_0000)				

9.7.5.44 0x0260 PD External Interrupt Configure Register 0 (Default Value: 0x0000_0000)

Offset: 0x0260			Register Name:PD_EINT_CFG0
Bit	Read/Write	Default/Hex	Description
			EINT7_CFG
			External INT7 Mode
			0x0: Positive Edge
31:28	R/W	0x0	0x1: Negative Edge
51.20		0,0	0x2: High Level
			0x3: Low Level
			0x4: Double Edge (Positive/Negative)
			Others: Reserved
			EINT6_CFG
	R/W	0x0	External INT6 Mode
			0x0: Positive Edge
27:24			0x1: Negative Edge
27.24			0x2: High Level
			0x3: Low Level
			0x4: Double Edge (Positive/Negative)
			Others: Reserved

Offset: 0	Offset: 0x0260		Register Name:PD_EINT_CFG0
Bit	Read/Write	Default/Hex	Description
			EINT5_CFG
			External INT5 Mode
			0x0: Positive Edge
23:20	R/W	0x0	0x1: Negative Edge
23.20	ny vv	0.00	0x2: High Level
			0x3: Low Level
			0x4: Double Edge (Positive/Negative)
			Others: Reserved
			EINT4_CFG
			External INT4 Mode
			0x0: Positive Edge
19:16	R/W	0x0	0x1: Negative Edge
19.10		0.00	0x2: High Level
			0x3: Low Level
			0x4: Double Edge (Positive/Negative)
			Others: Reserved
			EINT3_CFG
			External INT3 Mode
			0x0: Positive Edge
15:12	R/W	0x0	0x1: Negative Edge
10.12		UNU CONC	0x2: High Level
			0x3: Low Level
		/	0x4: Double Edge (Positive/Negative)
			Others: Reserved
			EINT2_CFG
			External INT2 Mode
		0x0	0x0: Positive Edge
11:8	R/W		0x1: Negative Edge
11.0			0x2: High Level
			0x3: Low Level
			0x4: Double Edge (Positive/Negative)
			Others: Reserved

Offset: 0x0260			Register Name:PD_EINT_CFG0
Bit	Read/Write	Default/Hex	Description
			EINT1_CFG
			External INT1 Mode
			0x0: Positive Edge
7:4		0x0	0x1: Negative Edge
7.4	R/W	0x0	0x2: High Level
			0x3: Low Level
			0x4: Double Edge (Positive/Negative)
			Others: Reserved
			EINT0_CFG
		0х0	External INTO Mode
			0x0: Positive Edge
3:0	DAA		Ox1: Negative Edge
5.0	R/W		0x2: High Level
			0x3: Low Level
			0x4: Double Edge (Positive/Negative)
			Others: Reserved

9.7.5.45 0x0264 PD External Interrupt Configure Register 1 (Default Value: 0x0000_0000)

Offset: 0x0264			Register Name:PD_EINT_CFG1
Bit	Read/Write	Default/Hex	Description
		/	EINT15_CFG
31:28 R,		0×0	External INT15 Mode
	R/W		0x0: Positive Edge
			0x1: Negative Edge
			0x2: High Level
			0x3: Low Level
			0x4: Double Edge (Positive/Negative)
			Others: Reserved

Offset: 0	x0264		Register Name:PD_EINT_CFG1
Bit	Read/Write	Default/Hex	Description
			EINT14_CFG
			External INT14 Mode
			0x0: Positive Edge
27.24		0.40	0x1: Negative Edge
27:24	R/W	0x0	0x2: High Level
			0x3: Low Level
			0x4: Double Edge (Positive/Negative)
			Others: Reserved
			EINT13_CFG
			External INT13 Mode
			0x0: Positive Edge
22.20		0.40	Ox1: Negative Edge
23:20	R/W	0x0	0x2: High Level
			0x3: Low Level
			0x4: Double Edge (Positive/Negative)
			Others: Reserved
			EINT12_CFG
			External INT12 Mode
			0x0: Positive Edge
19:16	R/W	0x0	0x1: Negative Edge
15.10		0.0	0x2: High Level
			0x3: Low Level
			0x4: Double Edge (Positive/Negative)
			Others: Reserved
			EINT11_CFG
			External INT11 Mode
			0x0: Positive Edge
15:12	R/W	0v0	0x1: Negative Edge
13.12		0x0	0x2: High Level
			0x3: Low Level
			0x4: Double Edge (Positive/Negative)
			Others: Reserved

Offset: 0x0264			Register Name:PD_EINT_CFG1
Bit	Read/Write	Default/Hex	Description
			EINT10_CFG
			External INT10 Mode
			0x0: Positive Edge
11.0	DAA	00	0x1: Negative Edge
11:8	R/W	0x0	0x2: High Level
			0x3: Low Level
			0x4: Double Edge (Positive/Negative)
			Others: Reserved
			EINT9_CFG
		0x0	External INT9 Mode
			0x0: Positive Edge
7.4	5 4 4		Ox1: Negative Edge
7:4	R/W		0x2: High Level
			0x3: Low Level
			0x4: Double Edge (Positive/Negative)
			Others: Reserved
			EINT8_CFG
		0×0	External INT8 Mode
			0x0: Positive Edge
3:0	R/W		0x1: Negative Edge
5.0	r/vv		0x2: High Level
			0x3: Low Level
			0x4: Double Edge (Positive/Negative)
			Others: Reserved

9.7.5.46 0x0268 PD External Interrupt Configure Register 2 (Default Value: 0x0000_0000)

Offset: 0	Offset: 0x0268		Register Name:PD_EINT_CFG2
Bit	Read/Write	Default/Hex	Description
31:28	/	/	/

Offset: 0	x0268		Register Name:PD_EINT_CFG2
Bit	Read/Write	Default/Hex	Description
			EINT22_CFG
			External INT22 Mode
			0x0: Positive Edge
27.24		0.40	0x1: Negative Edge
27:24	R/W	0x0	0x2: High Level
			0x3: Low Level
			0x4: Double Edge (Positive/Negative)
			Others: Reserved
			EINT21_CFG
			External INT21 Mode
			0x0: Positive Edge
23:20	R/W	0x0	Ox1: Negative Edge
25.20	r/ vv	UXU	0x2: High Level
			0x3: Low Level
			0x4: Double Edge (Positive/Negative)
			Others: Reserved
			EINT20_CFG
			External INT20 Mode
			0x0: Positive Edge
19:16	R/W	0x0	0x1: Negative Edge
13.10		UNU	0x2: High Level
			0x3: Low Level
			0x4: Double Edge (Positive/Negative)
			Others: Reserved
			EINT19_CFG
			External INT19 Mode
			0x0: Positive Edge
15:12	R/W	0x0	0x1: Negative Edge
13.12		UXU	0x2: High Level
			0x3: Low Level
			0x4: Double Edge (Positive/Negative)
			Others: Reserved

Offset: 0x0268			Register Name:PD_EINT_CFG2
Bit	Read/Write	Default/Hex	Description
			EINT18_CFG
			External INT18 Mode
			0x0: Positive Edge
11.0		0x0	0x1: Negative Edge
11:8	R/W	UXU	0x2: High Level
			0x3: Low Level
			0x4: Double Edge (Positive/Negative)
			Others: Reserved
			EINT17_CFG
			External INT17 Mode
			0x0: Positive Edge
7:4	R/W	0.0	Ox1: Negative Edge
7:4	K/ W	0x0	0x2: High Level
			0x3: Low Level
			0x4: Double Edge (Positive/Negative)
			Others: Reserved
			EINT16_CFG
			External INT16 Mode
			0x0: Positive Edge
3:0	R/W		0x1: Negative Edge
3.0	r, v	0x0	0x2: High Level
			0x3: Low Level
			0x4: Double Edge (Positive/Negative)
			Others: Reserved

9.7.5.47 0x0270 PD External Interrupt Control Register (Default Value: 0x0000_0000)

Offset: 0x	0270		Register Name: PD_EINT_CTL
Bit	Read/Write	Default/Hex	Description
31:23	/	/	/
	R/W	0x0	EINT22_CTL
22			External INT22 Enable
22			0: Disable
			1: Enable

Offset: 0x	0270		Register Name: PD_EINT_CTL
Bit	Read/Write	Default/Hex	Description
			EINT21_CTL
24	5.444		External INT21 Enable
21	R/W	0x0	0: Disable
			1: Enable
			EINT20_CTL
20	R/W	0x0	External INT20 Enable
20		0.00	0: Disable
			1: Enable
			EINT19_CTL
19	R/W	0x0	External INT19 Enable
15		0.0	0: Disable
			1: Enable
			EINT18_CTL
18	R/W	0x0	External INT18 Enable
10	.,,	UNU	0: Disable
			1: Enable
			EINT17_CTL
17	R/W	0x0	External INT17 Enable
	·		0: Disable
			1: Enable
			EINT16_CTL
16	R/W	0x0	External INT16 Enable
		SNO	0: Disable
			1: Enable
			EINT15_CTL
15	R/W	0x0	External INT15 Enable
			0: Disable
			1: Enable
			EINT14_CTL
14	R/W	0x0	External INT14 Enable
			0: Disable
			1: Enable
			EINT13_CTL
13	R/W	0x0	External INT13 Enable
			0: Disable
			1: Enable

Offset: 0x	0270		Register Name: PD_EINT_CTL
Bit	Read/Write	Default/Hex	Description
			EINT12_CTL
12	DAA	00	External INT12 Enable
12	R/W	0x0	0: Disable
			1: Enable
			EINT11_CTL
11	R/W	0x0	External INT11 Enable
11		0.00	0: Disable
			1: Enable
			EINT10_CTL
10	R/W	0x0	External INT10 Enable
10		0.0	0: Disable
			1: Enable
			EINT9_CTL
9	R/W	0x0	External INT9 Enable
5	1,7 17		0: Disable
			1: Enable
	R/W	4	EINT8_CTL
8		0x0	External INT8 Enable
	.,		0: Disable
			1: Enable
			EINT7_CTL
7	R/W	0x0	External INT7 Enable
	.,		0: Disable
			1: Enable
			EINT6_CTL
6	R/W	0x0	External INT6 Enable
			0: Disable
			1: Enable
			EINT5_CTL
5	R/W	0x0	External INT5 Enable
-	1.Y VV		0: Disable
			1: Enable
			EINT4_CTL
4	R/W	0x0	External INT4 Enable
			0: Disable
			1: Enable

Offset: 0x	Offset: 0x0270		Register Name: PD_EINT_CTL
Bit	Read/Write	Default/Hex	Description
			EINT3_CTL
3	R/W	0x0	External INT3 Enable
5		0.00	0: Disable
			1: Enable
			EINT2_CTL
2	R/W	0x0	External INT2 Enable
2	K/ VV		0: Disable
			1: Enable
			EINT1_CTL
1	R/W	0x0	External INT1 Enable
1			0: Disable
			1: Enable
		0x0	EINTO_CTL
0	R/W		External INTO Enable
0			0: Disable
			1: Enable

9.7.5.48 0x0274 PD External Interrupt Status Register (Default Value: 0x0000_0000)

Offset: 0x	0274		Register Name: PD_EINT_STATUS
Bit	Read/Write	Default/Hex	Description
31:23	/	/	/
			EINT22_STATUS
			External INT22 Pending Bit
22	R/W1C	0x0	0: No IRQ pending
			1: IRQ pending
			Write '1' to clear
			EINT21_STATUS
			External INT21 Pending Bit
21	R/W1C	0x0	0: No IRQ pending
			1: IRQ pending
			Write '1' to clear

Offset: 0x	0274		Register Name: PD_EINT_STATUS
Bit	Read/Write	Default/Hex	Description
			EINT20_STATUS
			External INT20 Pending Bit
20	R/W1C	0x0	0: No IRQ pending
			1: IRQ pending
			Write '1' to clear
			EINT19_STATUS
			External INT19 Pending Bit
19	R/W1C	0x0	0: No IRQ pending
			1: IRQ pending
			Write '1' to clear
			EINT18_STATUS
			External INT18 Pending Bit
18	R/W1C	0x0	0: No IRQ pending
			1: IRQ pending
			Write '1' to clear
			EINT17_STATUS
			External INT17 Pending Bit
17	R/W1C	0x0	0: No IRQ pending
			1: IRQ pending
			Write '1' to clear
			EINT16_STATUS
			External INT16 Pending Bit
16	R/W1C	0x0	0: No IRQ pending
			1: IRQ pending
			Write '1' to clear
			EINT15_STATUS
			External INT15 Pending Bit
15	R/W1C	0x0	0: No IRQ pending
			1: IRQ pending
			Write '1' to clear
			EINT14_STATUS
			External INT14 Pending Bit
14	R/W1C	0x0	0: No IRQ pending
			1: IRQ pending
			Write '1' to clear

Offset: 0x	0274		Register Name: PD_EINT_STATUS
Bit	Read/Write	Default/Hex	Description
			EINT13_STATUS
			External INT13 Pending Bit
13	R/W1C	0x0	0: No IRQ pending
			1: IRQ pending
			Write '1' to clear
			EINT12_STATUS
			External INT12 Pending Bit
12	R/W1C	0x0	0: No IRQ pending
			1: IRQ pending
			Write '1' to clear
			EINT11_STATUS
			External INT11 Pending Bit
11	R/W1C	0x0	0: No IRQ pending
			1: IRQ pending
			Write '1' to clear
			EINT10_STATUS
			External INT10 Pending Bit
10	R/W1C	0x0	0: No IRQ pending
			1: IRQ pending
			Write '1' to clear
			EINT9_STATUS
			External INT9 Pending Bit
9	R/W1C	0x0	0: No IRQ pending
			1: IRQ pending
			Write '1' to clear
			EINT8_STATUS
			External INT8 Pending Bit
8	R/W1C	0x0	0: No IRQ pending
			1: IRQ pending
			Write '1' to clear
			EINT7_STATUS
			External INT7 Pending Bit
7	R/W1C	0x0	0: No IRQ pending
			1: IRQ pending
			Write '1' to clear

Offset: 0x	0274		Register Name: PD_EINT_STATUS
Bit	Read/Write	Default/Hex	Description
			EINT6_STATUS
			External INT6 Pending Bit
6	R/W1C	0x0	0: No IRQ pending
			1: IRQ pending
			Write '1' to clear
			EINT5_STATUS
			External INT5 Pending Bit
5	R/W1C	0x0	0: No IRQ pending
			1: IRQ pending
			Write '1' to clear
			EINT4_STATUS
			External INT4 Pending Bit
4	R/W1C	0x0	0: No IRQ pending
			1: IRQ pending
			Write '1' to clear
			EINT3_STATUS
		4	External INT3 Pending Bit
3	R/W1C	0x0	0: No IRQ pending
			1: IRQ pending
			Write '1' to clear
			EINT2_STATUS
			External INT2 Pending Bit
2	R/W1C	0x0	0: No IRQ pending
			1: IRQ pending
			Write '1' to clear
			EINT1_STATUS
			External INT1 Pending Bit
1	R/W1C	0x0	0: No IRQ pending
			1: IRQ pending
			Write '1' to clear
			EINTO_STATUS
			External INTO Pending Bit
0	R/W1C	0x0	0: No IRQ pending
			1: IRQ pending
			Write '1' to clear

9.7.5.49 0x0278 PD External Interrupt Debounce Register (Default Value: 0x0000_0000)

Offset: 0x0278			Register Name: PD_EINT_DEB	
Bit	Read/Write	Default/Hex	Description	
31:7	/	/	/	
			DEB_CLK_PRE_SCALE	
6:4	R/W	0x0	Debounce Clock Pre_scale n	
			The selected clock source is prescaled by 2^n.	
3:1	/	1	/	
		0x0	PIO_INT_CLK_SELECT	
	R/W		PIO Interrupt Clock Select	
0			0: LOSC 32KHz	
			1: HOSC 24MHz	
0x0280 PE External Interrupt Configure Register 0 (Default Value: 0x0000_0000)				

9.7.5.50 0x0280 PE External Interrupt Configure Register 0 (Default Value: 0x0000_0000)

Offset: 0x02	80		Register Name:PE_EINT_CFG0
Bit	Read/Write	Default/Hex	Description
			EINT7_CFG
			External INT7 Mode
			0x0: Positive Edge
31:28	R/W	0x0	0x1: Negative Edge
51.20		0.0	0x2: High Level
			0x3: Low Level
			0x4: Double Edge (Positive/Negative)
			Others: Reserved
			EINT6_CFG
		0x0	External INT6 Mode
			0x0: Positive Edge
27:24	R/W		0x1: Negative Edge
27.24			0x2: High Level
			0x3: Low Level
			0x4: Double Edge (Positive/Negative)
			Others: Reserved

Offset: 0x02	80		Register Name:PE_EINT_CFG0
Bit	Read/Write	Default/Hex	Description
			EINT5_CFG
			External INT5 Mode
			0x0: Positive Edge
23:20	R/W	0x0	0x1: Negative Edge
23.20	ry vv	0.00	0x2: High Level
			0x3: Low Level
			0x4: Double Edge (Positive/Negative)
			Others: Reserved
			EINT4_CFG
			External INT4 Mode
			0x0: Positive Edge
19:16	R/W	0x0	Ox1: Negative Edge
19.10		0.00	0x2: High Level
			0x3: Low Level
			0x4: Double Edge (Positive/Negative)
			Others: Reserved
			EINT3_CFG
			External INT3 Mode
			0x0: Positive Edge
15:12	R/W	0x0	0x1: Negative Edge
15.12		UXU	0x2: High Level
		- /	0x3: Low Level
			0x4: Double Edge (Positive/Negative)
			Others: Reserved
			EINT2_CFG
			External INT2 Mode
			0x0: Positive Edge
11:8	R/W	0x0	0x1: Negative Edge
			0x2: High Level
			0x3: Low Level
			0x4: Double Edge (Positive/Negative)
			Others: Reserved

Offset: 0x0280			Register Name:PE_EINT_CFG0
Bit	Read/Write	Default/Hex	Description
			EINT1_CFG
			External INT1 Mode
			0x0: Positive Edge
7:4	R/W	0x0	0x1: Negative Edge
7.4		0.00	0x2: High Level
			0x3: Low Level
			0x4: Double Edge (Positive/Negative)
			Others: Reserved
		0x0	EINT0_CFG
			External INTO Mode
			0x0: Positive Edge
3:0	R/W		Ox1: Negative Edge
3:0			0x2: High Level
			0x3: Low Level
			0x4: Double Edge (Positive/Negative)
			Others: Reserved

9.7.5.51 0x0284 PE External Interrupt Configure Register 1 (Default Value: 0x0000_0000)

Offset: 0x0284			Register Name: PE_EINT_CFG1
Bit	Read/Write	Default/Hex	Description
31:28	R/W	0x0	Reserved
27:24	R/W	0x0	Reserved
		0x0	EINT13_CFG
			External INT13 Mode
23:20			0x0: Positive Edge
	R/W		0x1: Negative Edge
23.20			0x2: High Level
			0x3: Low Level
			0x4: Double Edge (Positive/Negative)
			Others: Reserved

Offset: 0x02	84		Register Name: PE_EINT_CFG1
Bit	Read/Write	Default/Hex	Description
			EINT12_CFG
			External INT12 Mode
			0x0: Positive Edge
10.10	DAA	00	0x1: Negative Edge
19:16	R/W	0x0	0x2: High Level
			0x3: Low Level
			0x4: Double Edge (Positive/Negative)
			Others: Reserved
			EINT11_CFG
			External INT11 Mode
			0x0: Positive Edge
15:12	R/W	0x0	0x1: Negative Edge
13.12		0.00	0x2: High Level
			0x3: Low Level
			0x4: Double Edge (Positive/Negative)
			Others: Reserved
			EINT10_CFG
			External INT10 Mode
		0x0	0x0: Positive Edge
11:8	R/W		0x1: Negative Edge
			0x2: High Level
		/	0x3: Low Level
			0x4: Double Edge (Positive/Negative)
			Others: Reserved
			EINT9_CFG
			External INT9 Mode
		0x0	0x0: Positive Edge
7:4	R/W		0x1: Negative Edge
			0x2: High Level
			0x3: Low Level
			0x4: Double Edge (Positive/Negative)
			Others: Reserved

Offset: 0x0284			Register Name: PE_EINT_CFG1
Bit	Read/Write	Default/Hex	Description
			EINT8_CFG
	R/W	0x0	External INT8 Mode
			0x0: Positive Edge
3:0			0x1: Negative Edge
5.0			0x2: High Level
			0x3: Low Level
			0x4: Double Edge (Positive/Negative)
			Others: Reserved

9.7.5.52 0x0290 PE External Interrupt Control Register (Default Value: 0x0000_0000)

x0290 PE External Interrupt Control Register (Default Value: 0x0000_0000)				
Offset: 0x0290			Register Name: PE_EINT_CTL	
Bit	Read/Write	Default/Hex	Description	
31:14	1	1	/	
			EINT13_CTL	
13	R/W	0x0	External INT13 Enable	
13		0.0	0: Disable	
			1: Enable	
			EINT12_CTL	
12	R/W	0x0	External INT12 Enable	
12		0.0	0: Disable	
			1: Enable	
			EINT11_CTL	
11	R/W	0x0	External INT11 Enable	
		0.0	0: Disable	
			1: Enable	
			EINT10_CTL	
10	R/W	0x0	External INT10 Enable	
10		0,0	0: Disable	
			1: Enable	
			EINT9_CTL	
9	R/W	0x0	External INT9 Enable	
5			0: Disable	
			1: Enable	

Offset: 0x	0290		Register Name: PE_EINT_CTL
Bit	Read/Write	Default/Hex	Description
			EINT8_CTL
0	DAA	00	External INT8 Enable
8	R/W	0x0	0: Disable
			1: Enable
			EINT7_CTL
7	R/W	0x0	External INT7 Enable
/		0.00	0: Disable
			1: Enable
			EINT6_CTL
6	R/W	0x0	External INT6 Enable
		0.0	0: Disable
			1: Enable
			EINT5_CTL
5	R/W	0x0	External INT5 Enable
	Ny W	0.00	0: Disable
			1: Enable
		4	EINT4_CTL
4	R/W	0x0	External INT4 Enable
			0: Disable
			1: Enable
			EINT3_CTL
3	R/W	0x0	External INT3 Enable
			0: Disable
			1: Enable
			EINT2_CTL
2	R/W	0x0	External INT2 Enable
			0: Disable
			1: Enable
			EINT1_CTL
1	R/W	0x0	External INT1 Enable
			0: Disable
			1: Enable
			EINTO_CTL
0	R/W	0x0	External INTO Enable
			0: Disable
			1: Enable

9.7.5.53 0x0294 PE External Interrupt Status Register (Default Value: 0x0000_0000)

Offset: 0x	0294		Register Name: PE_EINT_STATUS
Bit	Read/Write	Default/Hex	Description
31:14	/	/	/
			EINT13_STATUS
			External INT13 Pending Bit
13	R/W1C	0x0	0: No IRQ pending
			1: IRQ pending
			Write '1' to clear
			EINT12_STATUS
			External INT12 Pending Bit
12	R/W1C	0x0	0: No IRQ pending
			1: IRQ pending
			Write '1' to clear
			EINT11_STATUS
			External INT11 Pending Bit
11	R/W1C	0x0	0: No IRQ pending
			1: IRQ pending
			Write '1' to clear
			EINT10_STATUS
			External INT10 Pending Bit
10	R/W1C	0x0	0: No IRQ pending
			1: IRQ pending
			Write '1' to clear
			EINT9_STATUS
			External INT9 Pending Bit
9	R/W1C	0x0	0: No IRQ pending
			1: IRQ pending
			Write '1' to clear
			EINT8_STATUS
			External INT8 Pending Bit
8	R/W1C	0x0	0: No IRQ pending
			1: IRQ pending
			Write '1' to clear

Offset: 0x	0294		Register Name: PE_EINT_STATUS
Bit	Read/Write	Default/Hex	Description
			EINT7_STATUS
			External INT7 Pending Bit
7	R/W1C	0x0	0: No IRQ pending
			1: IRQ pending
			Write '1' to clear
			EINT6_STATUS
			External INT6 Pending Bit
6	R/W1C	0x0	0: No IRQ pending
			1: IRQ pending
			Write '1' to clear
			EINT5_STATUS
			External INT5 Pending Bit
5	R/W1C	0x0	0: No IRQ pending
			1: IRQ pending
			Write '1' to clear
			EINT4_STATUS
			External INT4 Pending Bit
4	R/W1C	0x0	0: No IRQ pending
			1: IRQ pending
			Write '1' to clear
			EINT3_STATUS
			External INT3 Pending Bit
3	R/W1C	0x0	0: No IRQ pending
			1: IRQ pending
			Write '1' to clear
			EINT2_STATUS
			External INT2 Pending Bit
2	R/W1C	0x0	0: No IRQ pending
			1: IRQ pending
			Write '1' to clear
			EINT1_STATUS
			External INT1 Pending Bit
1	R/W1C	0x0	0: No IRQ pending
			1: IRQ pending
			Write '1' to clear

Offset: 0x0294			Register Name: PE_EINT_STATUS
Bit	Read/Write	Default/Hex	Description
			EINT0_STATUS
			External INTO Pending Bit
0	R/W1C	0x0	0: No IRQ pending
			1: IRQ pending
			Write '1' to clear

9.7.5.54 0x0298 PE External Interrupt Debounce Register (Default Value: 0x0000_0000)

Offset: 0x0298			Register Name: PE_EINT_DEB
Bit	Read/Write	Default/Hex	Description
31:7	/	/	
			DEB_CLK_PRE_SCALE
6:4	R/W	0x0	Debounce Clock Pre_scale n
			The selected clock source is prescaled by 2^n.
3:1	1	/	
			PIO_INT_CLK_SELECT
	D (1) (1)		PIO Interrupt Clock Select
0	R/W	0x0	0: LOSC 32KHz
			1: HOSC 24MHz

9.7.5.55 0x02A0 PF External Interrupt Configure Register 0 (Default Value: 0x0000_0000)

Offset: 0x02A0			Register Name: PF_EINT_CFG0
Bit	Read/Write	Default/Hex	Description
31:28	/	/	/
			EINT6_CFG
		0x0	External INT6 Mode
			0x0: Positive Edge
27:24	R/W		0x1: Negative Edge
27.24			0x2: High Level
			0x3: Low Level
			0x4: Double Edge (Positive/Negative)
			Others: Reserved

Offset: 0x02A0			Register Name: PF_EINT_CFG0
Bit	Read/Write	Default/Hex	Description
	R/W		EINT5_CFG
		0x0	External INT5 Mode
			0x0: Positive Edge
23:20			0x1: Negative Edge
23.20			0x2: High Level
			0x3: Low Level
			0x4: Double Edge (Positive/Negative)
			Others: Reserved
			EINT4_CFG
			External INT4 Mode
			0x0: Positive Edge
19:16	R/W	0x0	0x1: Negative Edge
19.10		0.0	0x2: High Level
			0x3: Low Level
			0x4: Double Edge (Positive/Negative)
			Others: Reserved
			EINT3_CFG
		0x0	External INT3 Mode
	R/W		0x0: Positive Edge
15:12			Ox1: Negative Edge
			0x2: High Level
			0x3: Low Level
			0x4: Double Edge (Positive/Negative)
			Others: Reserved
	R/W	0x0	EINT2_CFG
			External INT2 Mode
11:8			0x0: Positive Edge
			0x1: Negative Edge
			0x2: High Level
			0x3: Low Level
			0x4: Double Edge (Positive/Negative)
			Others: Reserved

Offset: 0x02A0			Register Name: PF_EINT_CFG0
Bit	Read/Write	Default/Hex	Description
		0x0	EINT1_CFG
			External INT1 Mode
			0x0: Positive Edge
7.4	R/W		0x1: Negative Edge
7:4			0x2: High Level
			0x3: Low Level
			0x4: Double Edge (Positive/Negative)
			Others: Reserved
		0x0	EINT0_CFG
	R/W		External INTO Mode
3:0			0x0: Positive Edge
			Ox1: Negative Edge
			0x2: High Level
			0x3: Low Level
			0x4: Double Edge (Positive/Negative)
			Others: Reserved

9.7.5.56 0x02B0 PF External Interrupt Control Register (Default Value: 0x0000_0000)

Offset: 0x02B0			Register Name: PF_EINT_CTL
Bit	Read/Write	Default/Hex	Description
31:7	/	/	/
	R/W	0x0	EINT6_CTL
6			External INT6 Enable
0			0: Disable
			1: Enable
	R/W	0x0	EINT5_CTL
E			External INT5 Enable
5			0: Disable
			1: Enable
	R/W	0x0	EINT4_CTL
4			External INT4 Enable
			0: Disable
			1: Enable

Offset: 0x02B0			Register Name: PF_EINT_CTL
Bit	Read/Write	Default/Hex	Description
2		0x0	EINT3_CTL
	R/W		External INT3 Enable
3			0: Disable
			1: Enable
		0x0	EINT2_CTL
2	D /\\/		External INT2 Enable
2	R/W		0: Disable
			1: Enable
		0x0	EINT1_CTL
1	R/W		External INT1 Enable
			0: Disable
			1: Enable
	R/W	0x0	EINTO_CTL
0			External INTO Enable
			0: Disable
			1: Enable

9.7.5.57 0x02B4 PF External Interrupt Status Register (Default Value: 0x0000_0000)

Offset: 0x02B4			Register Name: PF_EINT_STATUS
Bit	Read/Write	Default/Hex	Description
31:7	1	/	/
			EINT6_STATUS
			External INT6 Pending Bit
6	R/W1C	0x0	0: No IRQ pending
			1: IRQ pending
			Write '1' to clear
			EINT5_STATUS
			External INT5 Pending Bit
5	R/W1C	0x0	0: No IRQ pending
			1: IRQ pending
			Write '1' to clear

Offset: 0x02B4			Register Name: PF_EINT_STATUS
Bit	Read/Write	Default/Hex	Description
			EINT4_STATUS
			External INT4 Pending Bit
4	R/W1C	0x0	0: No IRQ pending
			1: IRQ pending
			Write '1' to clear
			EINT3_STATUS
			External INT3 Pending Bit
3	R/W1C	0x0	0: No IRQ pending
			1: IRQ pending
			Write '1' to clear
			EINT2_STATUS
			External INT2 Pending Bit
2	R/W1C	0x0	0: No IRQ pending
			1: IRQ pending
			Write '1' to clear
			EINT1_STATUS
			External INT1 Pending Bit
1	R/W1C	0x0	0: No IRQ pending
			1: IRQ pending
			Write '1' to clear
			EINTO_STATUS
		<i>F</i>	External INTO Pending Bit
0	R/W1C	0x0	0: No IRQ pending
			1: IRQ pending
			Write '1' to clear

9.7.5.58 0x02B8 PF External Interrupt Debounce Register (Default Value: 0x0000_0000)

Offset: 0x02B8			Register Name: PF_EINT_DEB
Bit	Read/Write	Default/Hex	Description
31:7	/	/	/
			DEB_CLK_PRE_SCALE
6:4	R/W	0x0	Debounce Clock Pre_scale n
			The selected clock source is prescaled by 2^n.
3:1	/	/	/

Offset: 0x02B8			Register Name: PF_EINT_DEB
Bit	Read/Write	Default/Hex	Description
	R/W	0x0	PIO_INT_CLK_SELECT
			PIO Interrupt Clock Select
0			0: LOSC 32KHz
			1: HOSC 24MHz

9.7.5.59 0x02C0 PG External Interrupt Configure Register 0 (Default Value: 0x0000_0000)

Offset: 0x	02C0		Register Name:PG_EINT_CFG0
Bit	Read/Write	Default/Hex	Description
			EINT7_CFG
			External INT7 Mode
			0x0: Positive Edge
21.20		0x0	Ox1: Negative Edge
31:28	R/W	UXU	0x2: High Level
			0x3: Low Level
		4	0x4: Double Edge (Positive/Negative)
			Others: Reserved
			EINT6_CFG
		0x0	External INT6 Mode
	R/W		0x0: Positive Edge
27:24			Ox1: Negative Edge
27.24		UXU	0x2: High Level
			0x3: Low Level
			0x4: Double Edge (Positive/Negative)
			Others: Reserved
			EINT5_CFG
			External INT5 Mode
			0x0: Positive Edge
23:20	R/W	0x0	0x1: Negative Edge
23.20	K/ VV	UXU	0x2: High Level
			0x3: Low Level
			0x4: Double Edge (Positive/Negative)
			Others: Reserved

Offset: 0x	Offset: 0x02C0		Register Name:PG_EINT_CFG0
Bit	Read/Write	Default/Hex	Description
			EINT4_CFG
			External INT4 Mode
			0x0: Positive Edge
19:16	R/W	0x0	0x1: Negative Edge
19.10		0,0	0x2: High Level
			0x3: Low Level
			0x4: Double Edge (Positive/Negative)
			Others: Reserved
			EINT3_CFG
			External INT3 Mode
			0x0: Positive Edge
15:12	R/W	0x0	Ox1: Negative Edge
15.12		0,10	0x2: High Level
			0x3: Low Level
			0x4: Double Edge (Positive/Negative)
			Others: Reserved
			EINT2_CFG
			External INT2 Mode
			0x0: Positive Edge
11:8	R/W	0x0	0x1: Negative Edge
	.,		0x2: High Level
			0x3: Low Level
			0x4: Double Edge (Positive/Negative)
			Others: Reserved
			EINT1_CFG
			External INT1 Mode
			0x0: Positive Edge
7:4	R/W	0x0	0x1: Negative Edge
			0x2: High Level
			0x3: Low Level
			0x4: Double Edge (Positive/Negative)
			Others: Reserved

Offset: 0x02C0			Register Name:PG_EINT_CFG0
Bit	Read/Write	Default/Hex	Description
		0x0	EINT0_CFG
	R/W		External INTO Mode
			0x0: Positive Edge
3:0			Ox1: Negative Edge
5.0			0x2: High Level
			0x3: Low Level
			0x4: Double Edge (Positive/Negative)
			Others: Reserved

9.7.5.60 0x02C4 PG External Interrupt Configure Register 1 (Default Value: 0x0000_0000)

0x02C4 PG I	02C4 PG External Interrupt Configure Register 1 (Default Value: 0x0000_0000)				
Offset: 0x	Offset: 0x02C4		Register Name: PG_EINT_CFG1		
Bit	Read/Write	Default/Hex	Description		
31:28	R/W	0x0	EINT15_CFG External INT15 Mode 0x0: Positive Edge 0x1: Negative Edge 0x2: High Level 0x3: Low Level 0x4: Double Edge (Positive/Negative) Others: Reserved		
27:24	R/W	0x0	EINT14_CFG External INT14 Mode 0x0: Positive Edge 0x1: Negative Edge 0x2: High Level 0x3: Low Level 0x4: Double Edge (Positive/Negative) Others: Reserved		

Offset: 0x	02C4		Register Name: PG_EINT_CFG1
Bit	Read/Write	Default/Hex	Description
			EINT13_CFG
			External INT13 Mode
			0x0: Positive Edge
23:20	R/W	0x0	0x1: Negative Edge
23.20		0.00	0x2: High Level
			0x3: Low Level
			0x4: Double Edge (Positive/Negative)
			Others: Reserved
			EINT12_CFG
			External INT12 Mode
			0x0: Positive Edge
19:16	R/W	0x0	0x1: Negative Edge
19.10		0,0	0x2: High Level
			0x3: Low Level
			0x4: Double Edge (Positive/Negative)
			Others: Reserved
			EINT11_CFG
			External INT11 Mode
			0x0: Positive Edge
15:12	R/W	0x0	0x1: Negative Edge
10.12	,	ond of	0x2: High Level
			0x3: Low Level
			0x4: Double Edge (Positive/Negative)
			Others: Reserved
			EINT10_CFG
			External INT10 Mode
11:8		0x0	0x0: Positive Edge
	R/W		0x1: Negative Edge
			0x2: High Level
			0x3: Low Level
			0x4: Double Edge (Positive/Negative)
			Others: Reserved

Offset: 0x02C4			Register Name: PG_EINT_CFG1
Bit	Read/Write	Default/Hex	Description
			EINT9_CFG
			External INT9 Mode
			0x0: Positive Edge
7:4	R/W	0.0	0x1: Negative Edge
7.4		0x0	0x2: High Level
			0x3: Low Level
			0x4: Double Edge (Positive/Negative)
			Others: Reserved
		0x0	EINT8_CFG
			External INT8 Mode
			0x0: Positive Edge
3:0	DAA		Ox1: Negative Edge
5.0	R/W		0x2: High Level
			0x3: Low Level
			0x4: Double Edge (Positive/Negative)
			Others: Reserved

9.7.5.61 0x02D0 PG External Interrupt Control Register (Default Value: 0x0000_0000)

Offset: 0x02D0			Register Name: PG_EINT_CTL
Bit	Read/Write	Default/Hex	Description
31:16	1	/	/
			EINT15_CTL
15	R/W	0.0	External INT15 Enable
13	R/ W	0x0	0: Disable
			1: Enable
			EINT14_CTL
14	R/W	0x0	External INT14 Enable
14	N/ VV	0x0	0: Disable
			1: Enable
	R/W	0x0	EINT13_CTL
13			External INT13 Enable
13			0: Disable
			1: Enable

Offset: 0x	02D0		Register Name: PG_EINT_CTL
Bit	Read/Write	Default/Hex	Description
			EINT12_CTL
12	D /M	00	External INT12 Enable
12	R/W	0x0	0: Disable
			1: Enable
			EINT11_CTL
11		00	External INT11 Enable
11	R/W	0x0	0: Disable
			1: Enable
			EINT10_CTL
10	5 444		External INT10 Enable
10	R/W	0x0	0: Disable
			1: Enable
			EINT9_CTL
	D /M	00	External INT9 Enable
9	R/W	0x0	0: Disable
			1: Enable
			EINT8_CTL
	D /hai		External INT8 Enable
8	R/W	0x0	0: Disable
			1: Enable
			EINT7_CTL
7		0.40	External INT7 Enable
/	R/W	0x0	0: Disable
			1: Enable
			EINT6_CTL
6	R/W	0x0	External INT6 Enable
0	n/ vv	0.00	0: Disable
			1: Enable
			EINT5_CTL
5	R/W	0x0	External INT5 Enable
J		0.0	0: Disable
			1: Enable
			EINT4_CTL
4	R/W	0x0	External INT4 Enable
			0: Disable
			1: Enable

Offset: 0x02D0			Register Name: PG_EINT_CTL
Bit	Read/Write	Default/Hex	Description
			EINT3_CTL
3	R/W	0x0	External INT3 Enable
5		0.00	0: Disable
			1: Enable
			EINT2_CTL
2	R/W	0x0	External INT2 Enable
2	K/ VV		0: Disable
			1: Enable
		0x0	EINT1_CTL
1	R/W		External INT1 Enable
1			0: Disable
			1: Enable
		0x0	EINTO_CTL
0	R/W		External INTO Enable
			0: Disable
			1: Enable

9.7.5.62 0x02D4 PG External Interrupt Status Register (Default Value: 0x0000_0000)

Offset: 0x	02D4		Register Name: PG_EINT_STATUS
Bit	Read/Write	Default/Hex	Description
31:16	1	/	/
			EINT15_STATUS
			External INT15 Pending Bit
15	R/W1C	0x0	0: No IRQ pending
			1: IRQ pending
			Write '1' to clear
			EINT14_STATUS
			External INT14 Pending Bit
14	R/W1C	0x0	0: No IRQ pending
			1: IRQ pending
			Write '1' to clear

Offset: 0x	02D4		Register Name: PG_EINT_STATUS
Bit	Read/Write	Default/Hex	Description
			EINT13_STATUS
			External INT13 Pending Bit
13	R/W1C	0x0	0: No IRQ pending
			1: IRQ pending
			Write '1' to clear
			EINT12_STATUS
			External INT12 Pending Bit
12	R/W1C	0x0	0: No IRQ pending
			1: IRQ pending
			Write '1' to clear
			EINT11_STATUS
			External INT11 Pending Bit
11	R/W1C	0x0	0: No IRQ pending
			1: IRQ pending
			Write '1' to clear
			EINT10_STATUS
			External INT10 Pending Bit
10	R/W1C	0x0	0: No IRQ pending
			1: IRQ pending
			Write '1' to clear
			EINT9_STATUS
			External INT9 Pending Bit
9	R/W1C	0x0	0: No IRQ pending
			1: IRQ pending
			Write '1' to clear
			EINT8_STATUS
			External INT8 Pending Bit
8	R/W1C	0x0	0: No IRQ pending
			1: IRQ pending
			Write '1' to clear
			EINT7_STATUS
			External INT7 Pending Bit
7	R/W1C	0x0	0: No IRQ pending
			1: IRQ pending
			Write '1' to clear

Offset: 0x	Offset: 0x02D4		Register Name: PG_EINT_STATUS
Bit	Read/Write	Default/Hex	Description
			EINT6_STATUS
			External INT6 Pending Bit
6	R/W1C	0x0	0: No IRQ pending
			1: IRQ pending
			Write '1' to clear
			EINT5_STATUS
			External INT5 Pending Bit
5	R/W1C	0x0	0: No IRQ pending
			1: IRQ pending
			Write '1' to clear
			EINT4_STATUS
			External INT4 Pending Bit
4	R/W1C	0x0	0: No IRQ pending
			1: IRQ pending
			Write '1' to clear
			EINT3_STATUS
		4	External INT3 Pending Bit
3	R/W1C	0x0	0: No IRQ pending
			1: IRQ pending
			Write '1' to clear
			EINT2_STATUS
			External INT2 Pending Bit
2	R/W1C	0x0	0: No IRQ pending
			1: IRQ pending
			Write '1' to clear
			EINT1_STATUS
			External INT1 Pending Bit
1	R/W1C	0x0	0: No IRQ pending
			1: IRQ pending
			Write '1' to clear
			EINTO_STATUS
			External INTO Pending Bit
0	R/W1C	0x0	0: No IRQ pending
			1: IRQ pending
			Write '1' to clear

9.7.5.63 0x02D8 PG External Interrupt Debounce Register (Default Value: 0x0000_0000)

Offset: 0x02D8			Register Name: PG_EINT_DEB
Bit	Read/Write	Default/Hex	Description
31:7	/	/	/
		0x0	DEB_CLK_PRE_SCALE
6:4	R/W		Debounce Clock Pre_scale n
			The selected clock source is prescaled by 2^n.
3:1	/	/	/
	R/W	0x0	PIO_INT_CLK_SELECT
0			PIO Interrupt Clock Select
0			0: LOSC 32KHz
			1: HOSC 24MHz

9.7.5.64 0x0340 PIO Group Withstand Voltage Mode Select Register (Default Value: 0x0000_0000)

When the power domain of GPIO is larger than 1.8 V, the withstand voltage is set to 3.3 V mode, the corresponding value in the 0x0340 register is set to 0.

When the power domain of GPIO is 1.8 V, the withstand voltage is set to 1.8 V mode, the corresponding value in the 0x0340 register is set to 1.

Offset: 0x0340			Register Name: PIO_POW_MOD_SEL
Bit	Read/Write	Default/Hex	Description
31:13	/	/	/
			VCCIO_PWR_MOD_SEL
12	R/W	0x0	VCC_IO POWER MODE Select
12	R/ W		0: 3.3 V
			1: 1.8 V
11:7	/	/	/
	R/W	0x0	PG_PWR_MOD_SEL
			PG_POWER MODE Select
6			0: 3.3 V
			1: 1.8 V
			If PG_Port Power Source selects VCC_IO, this bit is invalid.

Offset: 0x0340			Register Name: PIO_POW_MOD_SEL
Bit	Read/Write	Default/Hex	Description
			PF_PWR_MOD_SEL
			PF_POWER MODE Select
5	R/W	0x0	0: 3.3 V
			1: 1.8 V
			If PF_Port Power Source selects VCC_IO, this bit is invalid.
			PE_PWR_MOD_SEL
			PE_POWER MODE Select
4	R/W	0x0	0: 3.3 V
			1: 1.8 V
			If PE_Port Power Source selects VCC_IO, this bit is invalid.
			PD_PWR_MOD_SEL
			PD_POWER MODE Select
3	R/W	0x0	0: 3.3 V
			1: 1.8 V
			If PD_Port Power Source selects VCC_IO, this bit is invalid.
			PC_PWR_MOD_SEL
			PC_POWER MODE Select
2	R/W	0x0	0: 3.3 V
			1: 1.8 V
			If PC_Port Power Source selects VCC_IO, this bit is invalid.
1:0	1	1	1
			/

9.7.5.65 0x0344 PIO Group Withstand Voltage Mode Select Control Register (Default Value: 0x0000_0000)

For 1.8 V and 3.3 V power, the withstand function is enabled by default, the corresponding bit in the 0x0344 register is set to 0.

For 2.5 V power, the withstand function is disabled, the corresponding bit in the 0x0344 register is set to 1, and
the corresponding withstand voltage in the 0x0340 register needs to be set to 3.3 V.

Offset: 0x0344			Register Name: PIO_POW_MS_CTL
Bit	Read/Write	Default/Hex	Description
31:13	/	/	/
	R/W	/W 0x0	VCCIO_WS_VOL_MOD_SEL
12			VCC_IO Withstand Voltage Mode Select Control
12			0: Enable
			1: Disable

Offset: 0x0344			Register Name: PIO_POW_MS_CTL
Bit	Read/Write	Default/Hex	Description
11:7	/	/	/
			VCC_PG_WS_VOL_MOD_SEL
C	R/W	0x0	VCC_PG Withstand Voltage Mode Select Control
6	r, vv	UXU	0: Enable
			1: Disable
			VCC_PF_WS_VOL_MOD_SEL
5	R/W	0x0	VCC_PF Withstand Voltage Mode Select Control
5		UXU	0: Enable
			1: Disable
		0x0	VCC_PE_WS_VOL_MOD_SEL
4	R/W		VCC_PE Withstand Voltage Mode Select Control
4		0.00	0: Enable
			1: Disable
		0x0	VCC_PD_WS_VOL_MOD_SEL
3	R/W		VCC_PD Withstand Voltage Mode Select Control
5		0,0	0: Enable
			1: Disable
		0x0	VCC_PC_WS_VOL_MOD_SEL
2	R/W		VCC_PC Withstand Voltage Mode Select Control
			0: Enable
			1: Disable
1:0	/	/	/

9.7.5.66 0x0348 PIO Group Power Value Register (Default Value: 0x0000_0000)

When the reading value of the 0x0348 register is 0, it indicates that the IO power voltage is greater than 2.5 V. When the reading value of the 0x0348 register is 1, it indicates that the IO power voltage is less than 2.0 V.

Offset: 0x	Offset: 0x0348		Register Name: PIO_POW_VAL
Bit	Read/Write	Default/Hex	Description
31:17	/	/	/
10	R	0x0	VCCIO_PWR_VAL
16			VCC_IO Power Value
15:7	/	/	/

Offset: 0x0348			Register Name: PIO_POW_VAL
Bit	Read/Write	Default/Hex	Description
			PG_PWR_VAL
6	R	0x0	PG_Port Power Value
			If PG_Port power source selects VCC_IO, this bit is invalid.
			PF_PWR_VAL
5	R	0x0	PF_Port Power Value
			If PF_Port power source selects VCC_IO, this bit is invalid.
			PE_PWR_VAL
4	R	0x0	PE_Port Power Value
			If PE_Port power source selects VCC_IO, this bit is invalid.
			PD_PWR_VAL
3	R	0x0	PD_Port Power Value
			If PD_Port power source selects VCC_IO, this bit is invalid.
			PC_PWR_VAL
2	R	0x0	PC_Port Power Value
			If PC_Port power source selects VCC_IO, this bit is invalid.
1:0	1	1	/

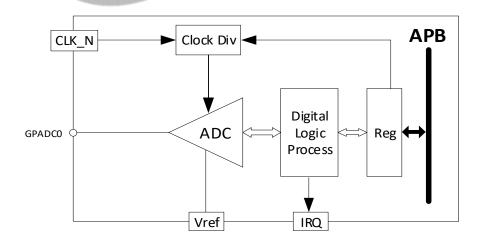
9.7.5.67 0x0350 PIO Group Power Voltage Select Control Register (Default Value: 0x0000_0001)

Offset: 0x0350			Register Name: PIO_POW_VOL_SEL_CTL
Bit	Read/Write	Default/Hex	Description
31:1	1	/	/
			VCC-PF Power Voltage Select Control
0	R/W	0x1	0: 1.8 V
			1: 3.3 V

9.8 **GPADC**

9.8.1 **Overview**

The General Purpose ADC (GPADC) can convert the external signal into a certain proportion of digital value, to realize the measurement of analog signal, which can be applied to power detection and key detection. This ADC is a type of successive approximation register (SAR) A/D converter.


The GPADC has the following features:

- One independent channel
- 12-bit sampling resolution and 8-bit precision
- 64 FIFO depth of data register
- WINER Power reference voltage: AVCC, and analog input voltage range: 0 to AVCC
- Maximum sampling frequency: 1 MHz
- Supports data compare and interrupt
- Supports three operation modes
 - Single conversion mode
 - Continuous conversion mode
 - Burst conversion mode

9.8.2 **Block Diagram**

Figure 9-70 shows the block diagram of the GPADC.

Figure 9-70 GPADC Block Diagram

9.8.3 Functional Description

9.8.3.1 External Signals

The following table describes the external signals of the GPADC.

Table 9-28 GPADC External Signals

Signal	Description	Туре
GPADC0	ADC Input Channel0	AI

9.8.3.2 Clock Sources

The GPADC has one clock source. The following table describes the clock source for GPADC. Users can see section 3.3 "<u>CCU</u>" for clock setting, configuration, and gating information.

Table 9-29 GPADC Clock Sources

Clock Sources	Description
HOSC	24 MHz

9.8.3.3 GPADC Work Mode

• Single conversion mode

The GPADC completes one conversion in a specified channel, the converted data is updated at the data register of the corresponding channel.

• Continuous conversion mode

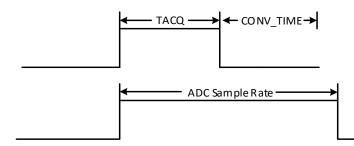
The GPADC has continuous conversion in a specified channel until the software stops, the converted data is updated at the data register of the corresponding channel.

• Burst conversion mode

The GPADC samples and converts in a specified channel, and sequentially stores the results in FIFO.

9.8.3.4 Clock and Timing Requirements

CLK_IN = 24 MHz



CONV_TIME(Conversion Time) = 1/(24MHz/14Cycles) =0.583 (us)

TACQ > 10RC (R is output impedance of ADC sample circuit, C = 6.4 pF)

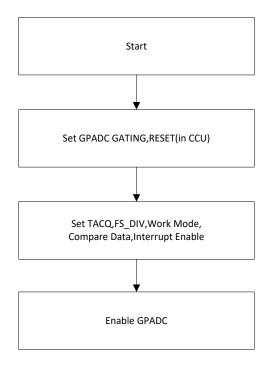
ADC Sample Frequency > TACQ+CONV_TIME

Figure 9-71 GPADC Clock and Timing Requirement

9.8.3.5 GPADC Calculate Formula

WINER GPADC calculate formula: GPADC_DATA = Vin/V_{REF} *4095

Where:


 $V_{REF} = 1.8 V$

9.8.4 **Programming Guidelines**

The GPADC initial process is as follows.

Figure 9-72 GPADC Initial Process

(1).Query Mode

- NER Write 0x1 to the bit[16] of GPADC BGR REG to dessert reset. Step 1
- Write 0x1 to the bit[0] of GPADC BGR REG to enable the GPADC clock. Step 2
- Write 0x2F to the bit[15:0] of GP_SR_CON to set the acquiring time of ADC. Step 3
- Step 4 Write 0x1DF to the bit[31:16] of <u>GP_SR_CON</u> to set the ADC sample frequency divider.
- Write 0x2 to the bit[19:18] of GP CTRL to set the continuous conversion mode. Step 5
- Write 0x1 to the bit[0] of GP_CS_EN to enable the *analog input channel*. Step 6
- Write 0x1 to the bit[16] of GP_CTRL to enable the ADC function. Step 7
- Read the bit[0] of GP_DATA_INTS, if the bit is 1, then data conversion is complete. Step 8
- Step 9 Read the bit[11:0] of GP_CH0_DATA, and calculate voltage value based on GPADC formula.

(2).Interrupt Mode

- Write 0x1 to the bit[16] of <u>GPADC_BGR_REG</u> to dessert reset. Step 1
- Step 2 Write 0x1 to the bit[0] of GPADC_BGR_REG to enable the GPADC clock.
- Step 3 Write 0x2F to the bit[15:0] of GP_SR_CON to set the acquiring time of ADC.
- Write 0x1DF to the bit[31:16] of GP_SR_CON to set the ADC sample frequency divider. Step 4
- Write 0x2 to the bit[19:18] of <u>GP_CTRL</u> to set the continuous conversion mode. Step 5

- **Step 6** Write 0x1 to the bit[0] of <u>GP_CS_EN</u> to enable the *analog input channel*.
- **Step 7** Write 0x1 to the bit[0] of <u>GP_DATA_INTC</u> to enable the GPADC data interrupt.
- **Step 8** Set interrupt based on PLIC module.
- **Step 9** Put interrupt handler address into interrupt vector table.
- **Step 10** Write 0x1 to the bit16 of <u>GP_CTRL</u> to enable the ADC function.
- **Step 11** Read the bit[11:0] of <u>GP_CHO_DATA</u> from the interrupt handler, calculate voltage value based on GPADC formula.

9.8.5 Register List

Module Name	Base Address		
GPADC	0x02009000		

Register Name	Offset	Description
GP_SR_CON	0x0000	GPADC Sample Rate Configure Register
GP_CTRL	0x0004	GPADC Control Register
GP_CS_EN	0x0008	GPADC Compare and Select Enable Register
GP_FIFO_INTC	0x000C	GPADC FIFO Interrupt Control Register
GP_FIFO_INTS	0x0010	GPADC FIFO Interrupt Status Register
GP_FIFO_DATA	0x0014	GPADC FIFO Data Register
GP_CDATA	0x0018	GPADC Calibration Data Register
GP_DATAL_INTC	0x0020	GPADC Data Low Interrupt Configure Register
GP_DATAH_INTC	0x0024	GPADC Data High Interrupt Configure Register
GP_DATA_INTC	0x0028	GPADC Data Interrupt Configure Register
GP_DATAL_INTS	0x0030	GPADC Data Low Interrupt Status Register
GP_DATAH_INTS	0x0034	GPADC Data High Interrupt Status Register
GP_DATA_INTS	0x0038	GPADC Data Interrupt Status Register
GP_CH0_CMP_DATA	0x0040	GPADC CH0 Compare Data Register
GP_CH0_DATA	0x0080	GPADC CH0 Data Register

Register Description 9.8.6

9.8.6.1 0x0000 GPADC Sample Rate Configure Register (Default Value: 0x01DF_002F)

Offset: 0x0000			Register Name: GP_SR_CON
Bit	Read/Write	Default/Hex	Description
			FS_DIV
21.16		0x1DF	ADC sample frequency divider
31:16	6 R/W		CLK_IN/(n+1)
			Default value: 50K
	15:0 R/W 0x2F	R/W 0x2F	TACQ
15.0			ADC acquire time
15:0			(n+1)/CLK_IN
			Default value: 2 us

9.8.6.2 0x0004 GPADC Control Register (Default Value: 0x0080_0000)

			Default value: 2 us			
0x0004 G	x0004 GPADC Control Register (Default Value: 0x0080_0000)					
Offset:	0x0004		Register Name: GP_CTRL			
Bit	Read/Write	Default/Hex	Description			
			ADC_FIRST_DLY			
31:24	R/ W	0x0	ADC First Convert Delay Setting			
			ADC conversion of each channel is delayed by N samples.			
22	- /	0x1	ADC_AUTOCALI_EN			
23	R/W		ADC Auto Calibration			
22	/	1	1			
			ADC_OP_BIAS			
21:20	R/W	0x0	ADC OP Bias			
			Adjust the bandwidth of the ADC amplifier			
			GPADC Work Mode			
			00: Single conversion mode			
19:18	R/W	0x0	01: Reserved			
			10: Continuous conversion mode			
			11: Burst conversion mode			
			ADC_CALI_EN			
17	R/W	0x0	ADC Calibration			
			1: Start Calibration, it is cleared to 0 after calibration			

Offset:	Offset: 0x0004		Register Name: GP_CTRL
Bit	Read/Write	Default/Hex	Description
			ADC_EN
			ADC Function Enable
	16 R/W	0x0	Before the bit is enabled, configure ADC parameters including the
16			work mode and channel number, etc.
10			0: Disable
			1: Enable
			Note: When selecting a single conversion mode, the bit can be
			cleared automatically after the switch is completed.
15:0	1	/	/

9.8.6.3 0x0008 GPADC Compare and Select Enable Register (Default Value: 0x0000_0000)

Offset: 0x0008			Register Name: GP_CS_EN
Bit	Read/Write	Default/Hex	Description
31:17	1	1	
		4	ADC_CH0_CMP_EN
16	D /M	0.40	Channel 0 Compare Enable
10	R/W	0x0	0: Disable
			1: Enable
15:1	/	1	/
			ADC_CH0_SELECT
0	R/W	0.0	Analog Input Channel 0 Select
	r/ vv	0x0	0: Disable
			1: Enable

9.8.6.4 0x000C GPADC FIFO Interrupt Control Register (Default Value: 0x0000_1F00)

Offset:	Offset: 0x000C		Register Name: GP_FIFO_INTC
Bit	Read/Write	Default/Hex	Description
31:19	/	/	/
		0x0	FIFO_DATA_DRQ_EN
10	18 R/W (ADC FIFO Date DRQ Enable
10			0: Disable
			1: Enable

Offset: 0x000C			Register Name: GP_FIFO_INTC
Bit	Read/Write	Default/Hex	Description
			FIFO_OVERRUN_IRQ_EN
17	R/W	0x0	ADC FIFO Overrun IRQ Enable
1/		0.00	0: Disable
			1: Enable
			FIFO_DATA_IRQ_EN
16	R/W	0x0	ADC FIFO Data Available IRQ Enable
10	r, vv	UXU	0: Disable
			1: Enable
15:14	/	/	/
			FIFO_TRIG_LEVEL
13:8	R/W	0x1F	Interrupt trigger level for ADC
			Trigger Level = TXTL + 1
7:5	/	/	
			FIFO_FLUSH
4	R/WAC	0x0	ADC FIFO Flush
			Write '1' to flush TX FIFO, clear automatically to '0'.
3:0	1	1	

9.8.6.5 0x0010 GPADC FIFO Interrupt Status Register (Default Value: 0x0000_0000)

1

Offset:	0x0010		Register Name: GP_FIFO_INTS
Bit	Read/Write	Default/Hex	Description
31:18	/	1	/
			FIFO_OVERRUN_PENDING
			ADC FIFO Overrun IRQ Pending
17	R/W1C	1C 0x0	0: No Pending IRQ
1/			1: FIFO Overrun Pending IRQ
			Write '1' to clear this interrupt or automatically clear if the
			interrupt condition fails.
			FIFO_DATA_PENDING
		0x0	ADC FIFO Data Available Pending Bit
16	16 R/W1C		0: NO Pending IRQ
	0.0	1: FIFO Available Pending IRQ	
			Write '1' to clear this interrupt or automatically clear if the
			interrupt condition fails.

Offset:	Offset: 0x0010		Register Name: GP_FIFO_INTS
Bit	Read/Write	Default/Hex	Description
15:14	/	/	/
12.0	13:8 R 0x0	0.0	RXA_CNT
13:8		UXU	ADC FIFO available sample word counter
7:0	/	/	/

9.8.6.6 0x0014 GPADC FIFO Data Register (Default Value: 0x0000_0000)

Offset:	Offset: 0x0014		Register Name: GP_FIFO_DATA
Bit	Read/Write	Default/Hex	Description
31:12	/	/	
11.0	D	0x0	GP_FIFO_DATA
11:0 R	UXU	GPADC Data in FIFO	

9.8.6.7 0x0018 GPADC Calibration Data Register (Default Value: 0x0000_0000)

4

Offset: 0x0018			Register Name: GP_CDATA
Bit	Read/Write	Default/Hex	Description
31:12	1	1	1
11:0	R/W	0x0	GP_CDATA GPADC Calibration Data

9.8.6.8 0x0020 GPADC Low Interrupt Configure Register (Default Value: 0x0000_0000)

Offset:	Offset: 0x0020		Register Name: GP_DATAL_INTC
Bit	Bit Read/Write Default/Hex		Description
31:1	/	/	/
			CH0_LOW_IRQ_EN
0		0x0	Channel 0 Voltage Low Available Interrupt Enable
0	R/W	UXU	0: Disable
			1: Enable

9.8.6.9 0x0024 GPADC High Interrupt Configure Register (Default Value: 0x0000_0000)

Offset: 0x0024			Register Name: GP_DATAH_INTC
Bit	Bit Read/Write Default/Hex		Description
31:1	1	/	/
			CH0_HIG_IRQ_EN
0		0.0	Channel 0 Voltage High Available Interrupt Enable
0	R/W	0x0	0: Disable
			1: Enable

9.8.6.10 0x0028 GPADC DATA Interrupt Configure Register (Default Value: 0x0000_0000)

Offset: 0x0028			Register Name: GP_DATA_INTC
Bit	Bit Read/Write Default/Hex		Description
31:1	/	/	
			CH0_DATA_IRQ_EN
0	R/W	0x0	0: Disable
			1: Enable

9.8.6.11 0x0030 GPADC Low Interrupt Status Register (Default Value: 0x0000_0000)

Offset:	Offset: 0x0030		Register Name: GP_DATAL_INTS
Bit	Bit Read/Write Default/Hex		Description
31:1	/	1	/
			CH0_LOW_PENGDING
	R/W1C	0x0	Channel 0 Voltage Low Available Interrupt Status
0			0: NO Pending IRQ
0			1: Channel 0 Voltage Low Available Pending IRQ
			Write '1' to clear this interrupt or automatically clear if the
			interrupt condition fails.

9.8.6.12 0x0034 GPADC High Interrupt Status Register (Default Value: 0x0000_0000)

Offset: 0x0034			Register Name: GP_DATAH_INTS
Bit	Bit Read/Write Default/Hex		Description
31:1	1	/	/
			CH0_HIG_PENGDING
			0: No Pending IRQ
0	R/W1C	0x0	1: Channel 0 Voltage High Available Pending IRQ
			Write '1' to clear this interrupt or automatically clear if the
			interrupt condition fails.

9.8.6.13 0x0038 GPADC Data Interrupt Status Register (Default Value: 0x0000_0000)

Offset: 0x0038			Register Name: GP_DATA_INTS
Bit	Read/Write	Default/Hex	Description
31:1	/	1	/
		x/W1C 0x0 0: No Pending IRQ 1: Channel 0 Data Available Pending IRQ	CH0_DATA_PENGDING
			Channel 0 Data Available Interrupt Status
0	P/M/1C		0: No Pending IRQ
	N/ WIC		1: Channel 0 Data Available Pending IRQ
			Write '1' to clear this interrupt or automatically clear if the
			interrupt condition fails.

9.8.6.14 0x0040 GPADC CH0 Compare Data Register (Default Value: 0x0BFF_0400)

Offset:	Offset: 0x0040		Register Name: GP_CH0_CMP_DATA
Bit	Read/Write	Default/Hex	Description
31:28	/	/	/
27:16 R/W 0xBFF	0xBFF	CH0_CMP_HIG_DATA	
27.10		UXDFF	Channel 0 Voltage High Value
15:12	/	/	/
11:0		0x400	CH0_CMP_LOW_DATA
11.0	R/W		Channel 0 Voltage Low Value

9.8.6.15 0x0080 GPADC CH0 Data Register (Default Value: 0x0000_0000)

Offset: 0x0080			Register Name: GP_CH0_DATA
Bit	Read/Write	Default/Hex	Description
31:12	/	/	/
11:0	D	0x000	GP_CH0_DATA
11.0	R		Channel 0 Data

NER

9.9 TPADC

9.9.1 Overview

The Touch Panel ADC (TPADC) is a 4-wire resistive touch screen controller, including a 12-bit SAR type A/D converter.

The TPADC has the following features:

- 12 bit SAR type A/D converter
- Configurable sample frequency up to 1 MHz
- One 32x12 FIFO for storing A/D conversion result
- Supports DMA slave interface
- Supports 4-wire resistive touch panel input detection
 - Supports pen down detection with programmable sensitivity
 - Supports single touch coordinate measurement
 - Supports dual touch detection
 - Supports touch pressure measurement with programmable threshold
 - Supports median and averaging filter for noise reduction
 - Supports X and Y coordinate exchange function
- Supports Aux ADC with up to 4 channels

9.9.2 Functional Description

9.9.2.1 External Signals

The following table describes the external signals of the TPADC.

Table 9-30 TPADC External Signals

Signal	Description	Туре
TP-X1	Touch Panel X1 Input	AI
TP-X2	Touch Panel X2 Input	AI
TP-Y1	Touch Panel Y1 Input	AI
TP-Y2	Touch Panel Y2 Input	AI



9.9.2.2 Single-ended Mode and Differential Mode

The controller is a typical type of successive approximation ADC (SAR ADC) which contains a sample/hold, analog-to-digital conversion, serial data output functions.

The analog inputs (X+, X-, Y+, Y-) enter the ADC through the control register, the ADC can work in single-ended or differential mode. Selecting Aux ADC should work in single-ended mode; for a touch screen application, it works in a differential mode, which can effectively eliminate the impact on conversion accuracy caused by the parasitic resistance of the driver switch and external interference.

Figure 9-73 shows TPADC Single-Ended Mode for the measurement of Aux, using the 1.8 V reference source as the ADC reference voltage.

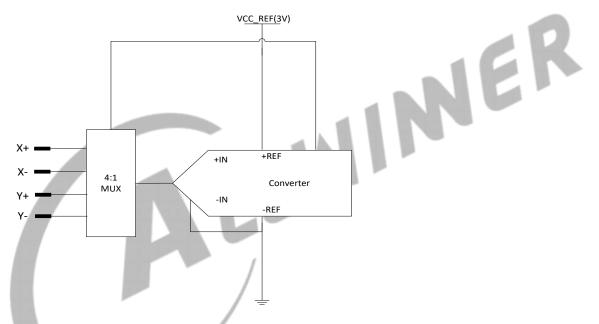
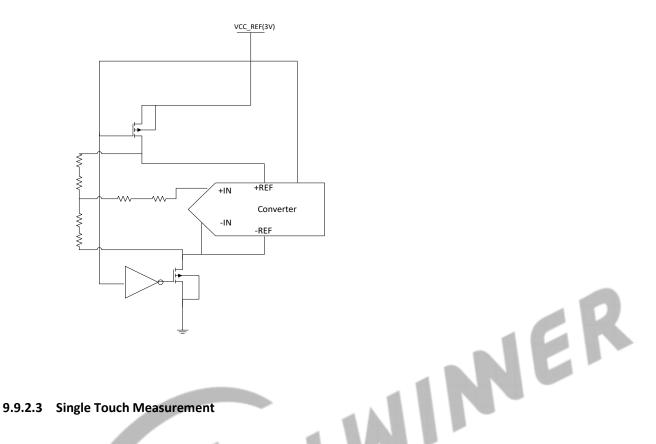



Figure 9-74 shows TPADC differential mode for the measurement of X/Y/Z coordinate of Touch Panel. The advantage of differential mode: +REF and –REF can directly input to the Y+ and Y-(or X+ and X-), which can eliminate the measurement error of X+/X-(or Y+/Y-) because of the switch on resistance. The disadvantage is that: both the sample or conversion process, the driver will need to be enabled. Compared with single-ended mode, the power consumption increases.

Figure 9-74 TPADC Differential Mode for Touch Panel

The following figure shows the operation principle of the single touch X-Coordinate measurement.

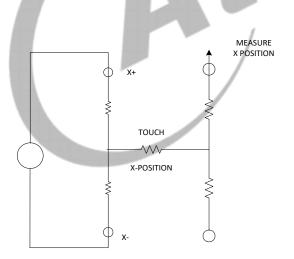
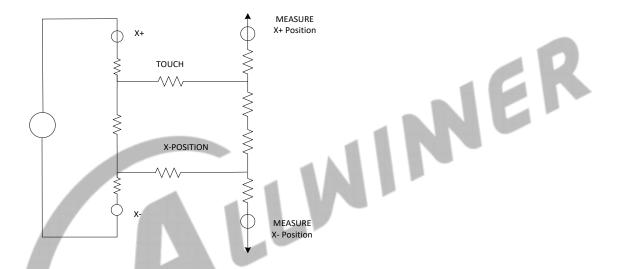


Figure 9-75 Single Touch X-Coordinate Measurement for Touch Panel

For an X coordinate measurement, the X+ pin is internally switched to VCC_REF and X- to GND. The X plate becomes a potential divider, and the voltage at the point of contact is proportional to its X co-ordinate. This voltage is measured on the Y+, which carries no current (hence there is no voltage drop in RY+ or RY-). Due to the ratio metric measurement method, the supply voltage does not affect measurement accuracy. The voltage

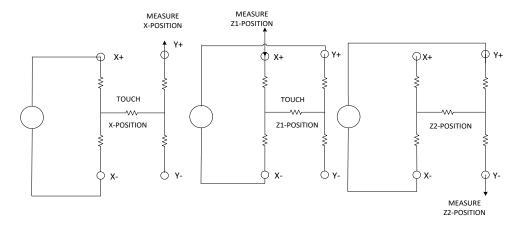

references VREF+ and VREF- are taken from after the matrix switches, so that any voltage drop in these switches has no effect on the ADC measurement.

Y coordinate measurements are similar to X coordinate measurements, with the X and Y plates interchanged.

9.9.2.4 Dual Touch Measurement

In single touch mode, it only needs to test X+ and Y+ signals. But in dual touch mode, it needs to test X+, X-, Y+, and Y- signals. The following figure shows the operation principle of dual touch detection for touch panel.

For X coordinates measurement, the X+ pin is internally switched to 3 V and X- to GND. The controller needs to test Y+ and Y-, Y coordinates measurement is similar. And record $\triangle X=|X+ - X-|$, $\triangle Y= | Y+ - Y-|$. In practice, we can set a threshold. If $\triangle X$ or $\triangle Y$ is greater than the threshold, we consider it as a dual touch, otherwise as a single touch.


9.9.2.5 Touch Pressure Measurement

The pressure applied to the touch screen by a pen or finger to filter unavailable can also be measured by the controller using some simple calculations. The contact resistance between the X and Y plates is measured, which provides a good indication of the size of the depressed area and the applied pressure. The area of the touch spot t is proportional to the size of the object touching it. And the value of this resistance (R_{touch}) can be calculated using two different methods.

Figure 9-77 Touch Pressure Measurement for Touch Panel

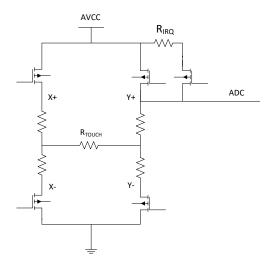
(1) First Method

The first method requires the user to know the total resistance of the X plate tablet (R_{XPLATE}). Three touch screen conversions are required: measurement of the X position, $X_{POSITION}$ (Y+ input); measurement of the X+ input with the excitation voltage applied to Y+ and X- (Z1 measurement); and measurement of the Y- input with the excitation voltage applied to Y+ and X- (Z2 measurement). These three measurements are illustrated in following Figure. The controller have two special ADC channel settings to configure the X and Y switches for the Z1 and Z2 measurements and store the results in the Z1 and Z2 result registers. The touch resistance (R_{TOUCH}) can then be calculated using the following equation.

 $R_{\text{TOUCH}} = (R_{\text{XPLATE}}) \times (X_{\text{POSITION}}/4096) \times [(Z2/Z1) - 1]$

(2) Second Method

The second method requires the user to know the resistance of the X-plate and Y-plate tablets. Three touch screen conversions are required: a measurement of the X position ($X_{POSITION}$), the Y position ($Y_{POSITION}$), and the Z1 position. The following equation also calculates the touch resistance (R_{TOUCH}).


```
R_{TOUCH} = R_{XPLATE} \times (X_{POSITION}/4096) \times [(4096/Z1) - 1] - R_{YPLATE} \times [1 - (Y_{POSITION}/4096)]
```

9.9.2.6 Pen Down Detection

Pen down detection is used as an interrupt to the host. RIRQ is an internal pull-up resistor with a programmable value from 6 k Ω to 96 k Ω (default 48 k Ω).

Figure 9-78 Pen Down Detection for Touch Panel

The pen down IRQ output is pulled high by an internal pull-up. In the pen down detection, the Y– driver is enabled and connected to GND, and the pen down IRQ output is connected to the X+ input. When the panel is touched, the X+ input is pulled to ground through the touch screen, and the pen down IRQ output goes low because of the current path through the panel to GND, initiating an interrupt to the processor.

During the measurement cycle for X-, Y-, and Z-position, the X+ input is disconnected from the pen down IRQ pull-down transistor to eliminate any pull-up resistor leakage current from flowing through the touch screen, thus causing no errors.

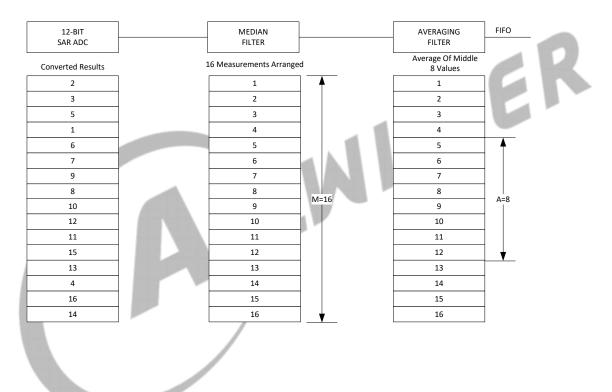
9.9.2.7 Median and Averaging Filter

Touch screens are composed of two resistive layers, normally placed over an LCD screen. Because these layers are in close proximity to the LCD screen, noise can be coupled from the screen onto these resistive layers, causing errors in the touch screen positional measurements.

The controller contain a filtering block to process the data and discard the spurious noise before sending the information to the host. The purpose of this block is not only the suppression of noise; the on-chip filtering also greatly reduces the host processing loading.

The processing function consists of two filters that are applied to the converted results: the median filter and the averaging filter. The median filter suppresses the isolated out-of-range noise and sets the number of measurements to be taken. These measurements are arranged in a temporary array, where the first value is the smallest measurement and the last value is the largest measurement. Then the averaging filter size determines the number of values to average. There are four choices which is configured by TP_CTRL3 register (bit 1 and bit 0) to filtrate the ADC sampling data.

Figure 9-79 Median and Averaging Filter Size


Bit1	Bit0	Averaging Filter Size	Median Filter Size
0	0	2	4

Bit1	Bit0	Averaging Filter Size	Median Filter Size
0	1	3	5
1	0	4	8
1	1	8	16

Example: In this example, the bit[1:0] of TP_CTRL_REG3 is configured as 2'b11. So the median filter has a window size of 16. This means that 16 measurements are taken and arranged in descending order in a temporary array. The averaging window size in this example is 8. The output is the average of the middle eight values of the 16 measurements taken with the median filter.

Figure 9-80 Median and Averaging Filter Example

9.9.3 Register List

Module Name	Base Address
TPADC	0x02009C00

Register Name	Offset	Description
TP_CTRL_REG0	0x0000	TP Control Register 0
TP_CTRL_REG1	0x0004	TP Control Register 1
TP_CTRL_REG2	0x0008	TP Control Register 2
TP_CTRL_REG3	0x000C	TP Control Register 3
TP_INT_FIFO_CTRL_REG	0x0010	TP Interrupt FIFO Control Register
TP_INT_FIFO_STAT_REG	0x0014	TP Interrupt FIFO Status Register

Register Name	Offset Description	
TP_CALI_DATA_REG	0x001C	TP Calibration Data Register
TP_DATA_REG	0x0024	TP Data Register

9.9.4 Register Description

9.9.4.1 0x0000 TP Control Register 0 (Default Value:0x0F80_0000)

Offset:	0x0000		Register Name: TP_CTRL0
Bit	Read/Write	Default/Hex	Description
31:24	R/W	0xF	ADC_FIRST_DLY ADC First Convert Delay Time (T_FCDT) Setting Based on ADC first convert delay mode select (Bit 23) T_FCDT = <u>ADC_FIRST_DLY</u> * <u>ADC_FIRST_DLY_MODE</u>
23	R/W	0x1	ADC_FIRST_DLY_MODE ADC First Convert Delay Mode Select 0: CLK_IN/16 1: CLK_IN/16*256
22	1	1	
21:20	R/W	0x0	ADC_CLK_DIVIDER ADC Clock Divider (CLK_IN) 00: CLK/2 01: CLK/3 10: CLK/6 11: CLK/1
19:16	R/W	0x0	FS_DIV ADC Sample Frequency Divider 0000: CLK_IN/2 ⁽²⁰⁻⁰⁾ 0001: CLK_IN/2 ⁽²⁰⁻¹⁾ 0010: CLK_IN/2 ⁽²⁰⁻²⁾ 1111: CLK_IN/2 ⁽²⁰⁻¹⁵⁾
15:0	R/W	0x0	TACQ Touch panel ADC acquire time CLK_IN/(16*(N+1))

9.9.4.2 0x0004 TP Control Register 1 (Default Value:0x0000_0101)

Offset:	0x0004		Register Name: TP_CTRL_REG1	
Bit	Read/Write	Default/Hex	Description	
31:20	/	/	/	
			STYLUS_UP_DEBOUNCE	
			Stylus Up De-bounce Time Setting	
19:12	R/W	0x0	0x00: 0	
			0xFF: 2N*(CLK_IN/16*256)	
11:10	/	/	/	
			STYLUS_UP_DEBOUCE_EN	
9	R/W	0x0	Stylus Up Debounce Function Select	
9	r/ vv	UXU	0: Disable	
			1: Enable	
			CHOPPER_EN	
			T-sensor Chopping Enable	
8	R/W	0x1	0: Disable	
			1: Enable	
			This field is not used when there is no T-sensor in TPADC	
	R/W	0x0	TOUCH_PAN_CALI_EN	
7			Touch Panel Calibration	
			1: Start calibration, it is cleared to 0 after calibration	
		0x0	TP_DUAL_EN	
6	R/W		Touch Panel Double Point Enable	
Ŭ	K/ VV		0: Disable	
			1: Enable	
			TP_EN.	
5	R/W	0x0	TP Function Enable	
			0: Disable	
			1: Enable	
4	R/W	0x0	TP_MODE_SELECT.	
			Touch Panel Mode and Auxiliary ADC Mode Select	
			0: ТР	
			1: Auxiliary ADC	

Offset: 0x0004			Register Name: TP_CTRL_REG1	
Bit	Read/Write	Default/Hex	Description	
3	R/W	0x0	ADC_CHAN3_SELECT	
			Analog Input Channel 3 Select	
			0: Disable	
			1: Enable	
2	R/W	0x0	ADC_CHAN2_SELECT	
			Analog Input Channel 2 Select	
			0: Disable	
			1: Enable	
	R/W	0x0	ADC_CHAN1_SELECT	
1			Analog Input Channel 1 Select	
			0: Disable	
			1: Enable	
0	R/W	0x1	ADC_CHAN0_SELECT	
			Analog Input Channel 0 Select	
			0: Disable	
			1: Enable	

CHANO-3 can be selected at the same time. If N channel is selected, each channel has 1/N full speed of the ADC. If only one channel is selected, it has the full conversion rate. CHANO-3 correspond to TP_YN, TP_YP, TP_XN, TP_XP.

9.9.4.3 0x0008 TP Control Register 2 (Default Value:0x8000_0FFF)

Offset:	Offset: 0x0008		Register Name: TP_CTRL_REG2	
Bit	Read/Write	Default/Hex	x Description	
	31:28 R/W 0x8		TP_SENSITIVE_ADJUST	
		0x8	Internal Pull-up Resistor Control	
31:28			0000: least sensitive	
51.20				
			1111: most sensitive	
			This field is used to adjust sensitivity of pen down detection.	

Offset:	Offset: 0x0008		Register Name: TP_CTRL_REG2
Bit	Read/Write	Default/Hex	Description
			TP_FIFO_MODE_SELECT
			TP FIFO Access Data Mode Select
			00: FIFO store X1,Y1 data for single touch no pressure mode
			01: FIFO store X1,Y1, \triangle X, \triangle Y data for dual touch no pressure mode
			10: FIFO store X1,Y1, X2,Y2 data for dual touch no pressure mode
			11: FIFO store X1,Y1, X2,Y2,Z1,Z2 data for dual touch and pressure mode
27:26	R/W	0x0	The ADC output data in single touch mode can store in FIFO with TP_FIFO_MODE_SELECT configured as 01,10,11. But the data $\triangle X$, $\triangle Y$ is theoretically equal to X1,Y1, and X2,Y2 is equal to 0.
			 When PRE_MEA_EN is set and TP_FIFO_MODE_SELECT is not configured as 2'b11, X and Y data will not be stored unless x1*(z2-z1)/z1 < PRE_MEA_THRE_CNT. Z data will always be zero when TP_FIFO_MODE_SELECT is configured as 2'b11 but PRE_MEA_EN is not set.
25	1	/	
			PRE MEA EN
24	R/W	0x0	TP Pressure Measurement Enable Control
			0: Disable
			1: Enable
	3:0 R/W 0xFFF		PRE_MEA_THRE_CNT
22.0			TP Pressure Measurement Threshold Control
23:0			0x000000:least sensitive
			OxFFFFFF: most sensitive
			This field is used to adjust sensitivity of touch.

9.9.4.4 0x000C TP Control Register 3 (Default Value:0x0000_0001)

Offset: 0x000C			Register Name: TP_CTRL_REG3
Bit	Bit Read/Write Default/Hex		Description
31:3	/	/	/

Offset:	Offset: 0x000C		Register Name: TP_CTRL_REG3
Bit	Read/Write	Default/Hex	Description
			FILTER_EN
2		0x0	Filter Enable
2	R/W		0: Disable
			1: Enable
	R/W	0x1	FILTER_TYPE
			Filter Type
1:0			00: 4/2
1.0			01: 5/3
			10: 8/4
			11: 16/8

9.9.4.5 0x0010 TP Interrupt& FIFO Control Register (Default Value:0x0000_0F00)

0x0010 TP Interrupt& FIFO Control Register (Default Value:0x0000_0F00)				
Offset:	0x0010		Register Name: TP_INT_FIFO_CTRL_REG	
Bit	Read/Write	Default/Hex	Description	
31:18	1	1		
			TP_OVERRUN_IRQ_EN	
17	R/W	020	TP FIFO Overrun IRQ Enable	
1/	K/ W	0x0	0: Disable	
			1: Enable	
			TP_DATA_IRQ_EN	
10		0x0	TP FIFO Data Available IRQ Enable	
16	R/W		0: Disable	
			1: Enable	
15:14	1	1	1	
			TP_DATA_XY_CHANGE	
13	R/W		TP FIFO X,Y Data Interchange Function Select	
15	r/ vv	0x0	0: Disable	
			1: Enable	
			TP_FIFO_TRIG_LEVEL	
12:8		0xF	TP FIFO Data Available Trigger Level	
12:8	R/W		Interrupt and DMA request trigger level for TP or Auxiliary ADC	
			Trigger Level = TXTL + 1	

Offset: 0x0010			Register Name: TP_INT_FIFO_CTRL_REG
Bit	Read/Write	Default/Hex	Description
			TP_DATA_DRQ_EN
7	R/W	0x0	TP FIFO Data Available DRQ Enable
/	rj vv	0.00	0: Disable
			1: Enable
6:5	/	/	/
		0x0	TP_FIFO_FLUSH
4	R/WAC		TP FIFO Flush
			Write '1' to flush TX FIFO, self clear to '0'
3:2	/	/	/
	- 4		TP_UP_IRQ_EN
1			Touch Panel Last Touch (Stylus Up) IRQ Enable
1	R/W	0x0	0: Disable
			1: Enable
			TP_DOWN_IRQ_EN
_	D /\\/	0.00	Touch Panel First Touch (Stylus Down) IRQ Enable
0	R/W	0x0	0: Disable
			1: Enable

9.9.4.6 0x0014 TP Interrupt& FIFO Status Register (Default Value:0x0000_0000)

Offset:	0x0014		Register Name: TP_INT_FIFO_STAT_REG
Bit	Read/Write	Default/Hex	Description
31:18	1	1	/
			FIFO_OVERRUN_PENDING
			TP FIFO Overrun IRQ pending
17	R/W1C	0x0	0: No Pending IRQ
1,			1: FIFO Overrun Pending IRQ
			Write '1' to clear this interrupt or automatically clear if interrupt
			condition fails.
			FIFO_DATA_PENDING
	R/W1C	C 0x0	TP FIFO Data Available Pending Bit
16			0: NO Pending IRQ
10			1: FIFO Available Pending IRQ
			Write '1' to clear this interrupt or automatically clear if \ensuremath{FIFO}
			flushed.

Offset:	Offset: 0x0014		Register Name: TP_INT_FIFO_STAT_REG			
Bit	Bit Read/Write Default/Hex		Description			
15:14	/	/	/			
13:8	3:8 R 0x0		RXA_CNT TP FIFO Available Sample Word Counter			
7:3	1	/	/			
2	R	0x0	TP_IDLE_FLG Touch Panel Idle Flag 0: idle 1: not idle			
1	R/W1C	0x0	 TP_UP_PENDING Touch Panel Last Touch (Stylus Up) IRQ Pending bit 0: No IRQ 1: IRQ Writing 1 to the bit clears it and its corresponding interrupt if the interrupt is enabled. 			
0	R/W1C 0x0		TP_DOWN_PENDING Touch Panel First Touch (Stylus Down) IRQ Pending bit 0: No IRQ 1: IRQ Writing 1 to the bit clears it and its corresponding interrupt if the interrupt is enabled.			

9.9.4.7 0x001C TP Calibration Data Register (Default Value:0x0000_0800)

Offset: 0x001C			Register Name: TP_CALI_DATA_REG	
Bit Read/Write Default/Hex		Default/Hex	Description	
31:12	31:12 / /		/	
			TP_CDAT	
11:0	R/W	0x800	TP Common Data	
			It is used to adjust the tolerance of the internal ADC.	

9.9.4.8 0x0024 TP Data Register (Default Value:0x0000_0000)

In touch panel mode, the data stored in this register bases on TP_FIFO_MODE_SELECT. In Auxiliary ADC mode, the data stored in this register bases on ADC_CHAN_SELECT. If four channels are enabled, FIFO will access the input data in successive turn (ADC_CHAN0 -> ADC_CHAN1 -> ADC_CHAN2 -> ADC_CHAN3). If only two or three

channels are selected, such as ADC_CHAN0 and ADC_CHAN3, firstly ADC_CHAN0 input data is accessed, then ADC_CHAN3 input data.

Offset:	Offset: 0x0024		Register Name: TP_DATA_REG
Bit Read/Write Default/Hex		Default/Hex	Description
31:12	31:12 / /		/
11:0	11:0 R 0x0		TP_DATA Touch Panel X ,Y data or Auxiliary analogy input data converted by the internal ADC.

ER

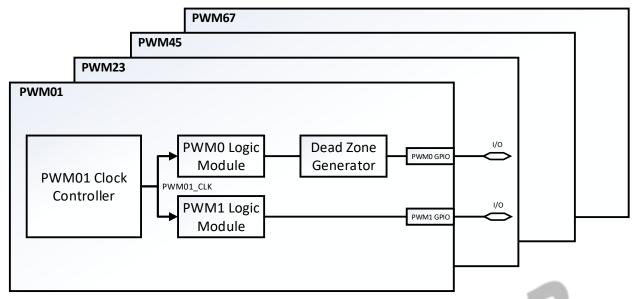
9.10 PWM

9.10.1 Overview

The Pulse Width Modulation (PWM) module can output the configurable PWM waveforms and measure the external input waveforms.

The PWM has the following features:

- Supports 8 independent PWM channels (PWM0 to PWM7)
 - Supports PWM continuous mode output
 - Supports PWM pulse mode output, and the pulse number is configurable
 - Output frequency range: 0 to 24 MHz or 100 MHz
 - Various duty-cycle: 0% to 100%
 - Minimum resolution: 1/65536
- Supports 4 complementary pairs output
 - PWM01 pair (PWM0 + PWM1), PWM23 pair (PWM2 + PWM3), PWM45 pair (PWM4 + PWM5),
 PWM67 pair (PWM6 + PWM7)
 - Supports dead-zone generator, and the dead-zone time is configurable
- Supports 4 group of PWM channel output for controlling stepping motors
 - Supports any plural channels to form a group, and output the same duty-cycle pulse
 - In group mode, the relative phase of the output waveform for each channel is configurable
- Supports 8 channels capture input
 - Supports rising edge detection and falling edge detection for input waveform pulse


Supports pulse-width measurement for input waveform pulse

9.10.2 Block Diagram

The PWM includes multi PWM channels. Each channel can generate different PWM waveform by the independent counter and duty-ratio configuration register. Each PWM pair shares one group of clock and deadzone generator to generate PWM waveform.

Figure 9-81 PWM Block Diagram

Jead-zoi Each PWM pair consists of 1 clock module, 2 timer logic module, and 1 programmable dead-zone generator.

9.10.3 Functional Description

9.10.3.1 External Signals

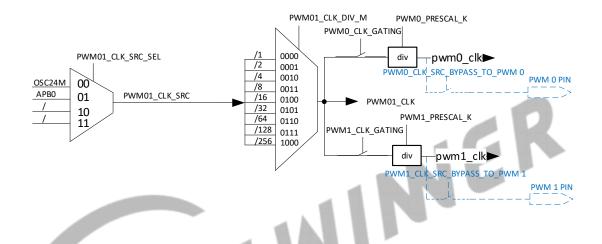
The following table describes the external signals of the PWM.

Table 9-3	1 PWM	External	Signals
-----------	-------	----------	---------

Signal	Description	Туре
PWM0	Pulse Width Module Channel0	I/O
PWM1	Pulse Width Module Channel1	I/O
PWM2	Pulse Width Module Channel2	I/O
PWM3	Pulse Width Module Channel3	I/O
PWM4	Pulse Width Module Channel4	I/O
PWM5	Pulse Width Module Channel5	I/O
PWM6	Pulse Width Module Channel6	I/O
PWM7	Pulse Width Module Channel7	I/O

9.10.3.2 Typical Application

Suitable for display device, such as LCD



• Suitable for electric motor control

9.10.3.3 Clock Controller

Using PWM01 as an example. The other PWM pairs are the same as PWM01.

Figure 9-82 PWM01 Clock Controller Diagram

The clock controller of each PWM pair includes clock source select (<u>PWM01 CLK SRC</u>), 1~256 scaler (<u>PWM01 CLK DIV M</u>). Each PWM channel has the secondary frequency division (<u>PWM PRESCAL K</u>), clock source bypass (<u>PWMx CLK BYPASS</u>) and clock switch (<u>PWMx CLK GATING</u>).

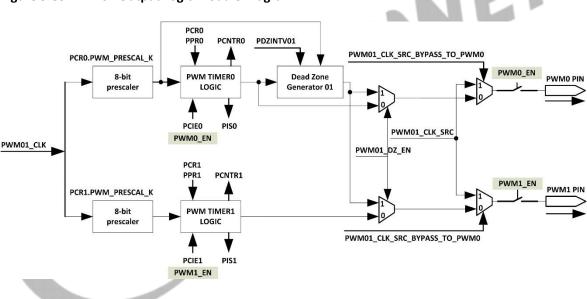
The clock sources have HOSC and APBO. The HOSC comes from the external high-frequency oscillator; the APBO is APBO bus clock.

The bypass function of the clock source is that the clock source directly accesses PWM output, the PWM output waveform is the waveform of the clock controller output. The BYPASS gridlines in the above figure indicate the bypass function of the clock source, see Figure 9-83 for the details about implement. At last, the output clock of the clock controller is sent to the PWM logic module.

9.10.3.4 PWM Output

Taking PWM01 as an example, Figure 9-83 indicates the PWM01 output logic diagram. The logic diagrams of other PWM pairs are the same as PWM01.

The timer logic module of PWM consists of one 16-bit up-counter (<u>PCNTR</u>) and three 16-bit parameters (<u>PWM ENTIRE CYCLE</u>, <u>PWM ACT CYCLE</u>, <u>PWM COUNTER START</u>). The <u>PWM ENTIRE CYCLE</u> is used to


control the PWM cycle, the <u>PWM_ACT_CYCLE</u> is used to control the duty-cycle, the <u>PWM_COUNTER_START</u> is used to control the output phase (multi-channel synchronization work requirements).

The <u>PWM_ENTIRE_CYCLE</u> and the <u>PWM_ACT_CYCLE</u> support the cache load, after PWM output is enabled, the register values of the <u>PWM_ENTIRE_CYCLE</u> and the <u>PWM_ACT_CYCLE</u> can be changed anytime, the changed value caches into the cache register. When the PCNTR counter outputs a period of PWM waveform, the value of the cache register can be updated for the PCNTR control. The purpose of the cache load is to avoid the unstable PWM output waveform with the burred feature when updating the values of the <u>PWM_ENTIRE_CYCLE</u> and <u>PWM_ACT_CYCLE</u>.

The PWM supports cycle and pulse waveform output.

Cycle mode: The PWM outputs the setting PWM waveform continually, that is, the output waveform is a continuous PWM square wave.

Pulse mode: After setting the <u>PWM_PUL_NUM</u> parameter, the PWM outputs (PWM_PULNUM+1) periods of PWM waveform, that is, the waveform with several pulses are output.

Figure 9-83 PWM01 Output Logic Module Diagram

9.10.3.5 Up-Counter and Comparator

The period, duty-cycle, and phase of PWM output waveform are decided by the **PCNTR**, <u>PWM_ENTIRE_CYCLE</u>, <u>PWM_ACT_CYCLE</u>, and <u>PWM_COUNTER_START</u>. The rules are as follows.

- PCNTR= (PCNTR==PWM_ENTIRE_CYCLE)?0 : PCNTR + 1
- PCNTR starts to count by <u>PWM COUNTER START</u>, the counter of a PWM period is (PWM ENTIRE CYCLE+1).
- PCNTR > (PWM_ENTIRE_CYCLE PWM_ACT_CYCLE), output "active state"

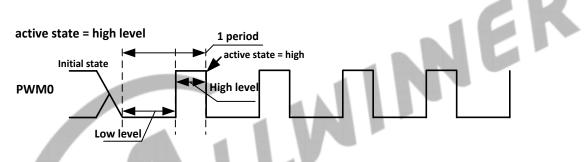
PCNTR <= (PWM_ENTIRE_CYCLE - PWM_ACT_CYCLE), output "~ (active state)"

Active state of PWM0 channel is high level (PCR0. PWM_ACT_STA = 1)

When PCNTR0 > (PPR0. PWM_ENTIRE_CYCLE - PPR0.PWM_ACT_CYCLE), then PWM0 outputs 1 (high level).

When PCNTR0 <= (PPR0. PWM_ENTIRE_CYCLE - PPR0.PWM_ACT_CYCLE), then PWM0 outputs 0 (low level).

The formula of the output period and the duty-cycle for PWM are as follows.


T_{period} = (PWM01_CLK / PWM0_PRESCALE_K)⁻¹ * (PPR0.PWM_ENTIRE_CYCLE + 1)

T_{high-level} = (PWM01_CLK / PWM0_PRESCALE_K)⁻¹ * PPR0.PWM_ACT_CYCLE

T_{low-level} = (PWM01_CLK / PWM0_PRESCALE_K)⁻¹ * (PPR0.PWM_ENTIRE_CYCLE + 1 - PPR0.PWM_ACT_CYCLE)

Duty-cycle = (high level time) / (1 period time) = T_{high-level} / T_{period}

Figure 9-84 PWM0 High Level Active State

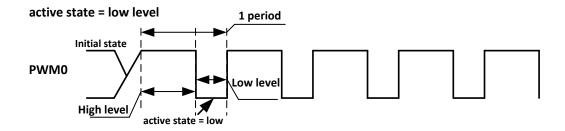
Active state of PWM0 channel is low level (PCR0. PWM_ACT_STA = 0)

When PCNTR0 > (PPR0.PWM_ENTIRE_CYCLE - PPR0.PWM_ACT_CYCLE), then PWM0 outputs 0.

When PCNTR0 <= (PPR0.PWM_ENTIRE_CYCLE - PPR0.PWM_ACT_CYCLE), then PWM0 outputs 1.

The formula of the output period and the duty-cycle for PWM are as follows.

T_{period} = (PWM01_CLK / PWM0_PRESCALE_K)⁻¹ * (PPR0.PWM_ENTIRE_CYCLE + 1)


T_{high-level} = (PWM01_CLK / PWM0_PRESCALE_K)⁻¹ * (PPR0.PWM_ENTIRE_CYCLE + 1 - PPR0.PWM_ACT_CYCLE)

T_{low-level} = (PWM01_CLK / PWM0_PRESCALE_K)⁻¹ * PPR0.PWM_ACT_CYCLE

Duty-cycle = (low level time) / (1 period time) = $T_{low-level}/T_{period}$

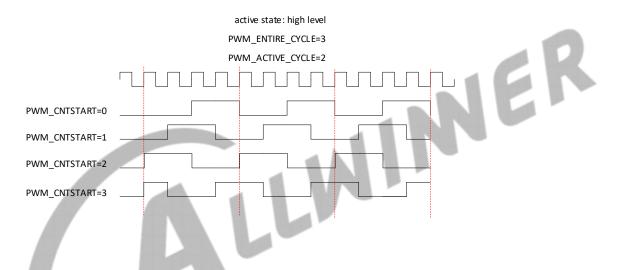
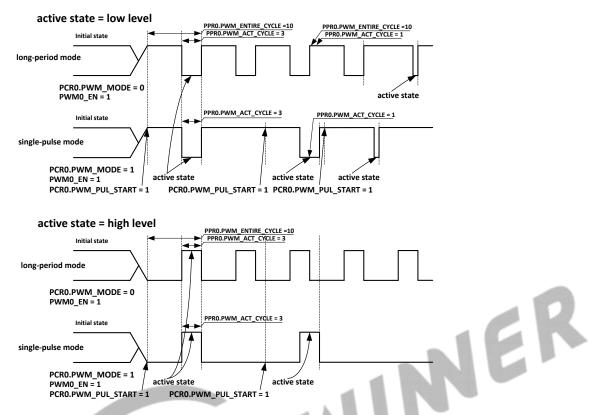


Figure 9-85 PWM0 Low Level Active State

The counter of PCNTR starts from 0 by default, it can output the pulse control of the waveform by setting <u>PWM_COUNTER_START</u>. The figure is as follows.


Figure 9-86 Phase of PWM0 High Level Active State

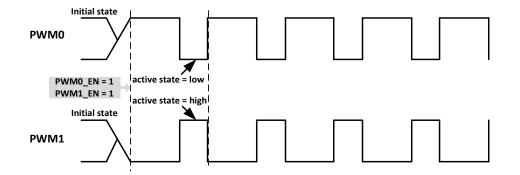
9.10.3.6 Pulse Mode and Cycle Mode

The PWM output supports pulse mode and cycle mode. PWM in pulse mode outputs one pulse waveform, but PWM in cycle mode outputs continuous waveform. Figure 9-87 shows the PWM output waveform in pulse mode and cycle mode.

Figure 9-87 PWM0 Output Waveform in Pulse Mode and Cycle Mode

Each channel of the PWM module supports the PWM output of pulse mode and cycle mode, the active state of the PWM output waveform can be programmed to control.

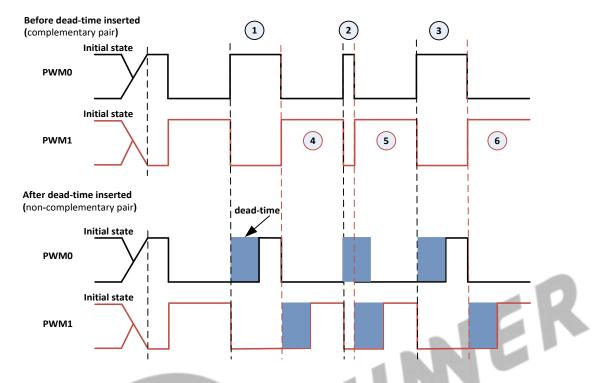
When <u>PCR</u>0[PWM_MODE] is 0, the PWM0 outputs in cycle mode. When <u>PCR</u>0[PWM_MODE] is 1, the PWM0 outputs in pulse mode.


Specifically, in pulse mode, after the PWM0 channel enabled, <u>PCR</u>0[PWM_PUL_START] needs to be set to 1 when the PWM0 needs to output pulse waveform, after completed the output, <u>PCR</u>0[PWM_PUL_START] can be cleared to 0 by hardware. The next setting 1 can be operated after <u>PCR</u>0[PWM_PUL_START] is cleared.

9.10.3.7 Complementary Pair Output

Every PWM pair supports complementary pair output and PWM pair with dead-time. Figure 9-88 shows the complementary pair output of PWM01.

Figure 9-88 PWM01 Complementary Pair Output



The complementary pair output needs to satisfy the following conditions:

- PWM0 and PWM1 have the same clock divider, frequency, duty-cycle, and phase
- PWM0 and PWM1 have an opposite active state
- Enable the clock gating of PWM0 and PWM1 at the same time
- NER Enable the waveform output of PWM0 and PWM1 at the same time

9.10.3.8 Dead-time Generator

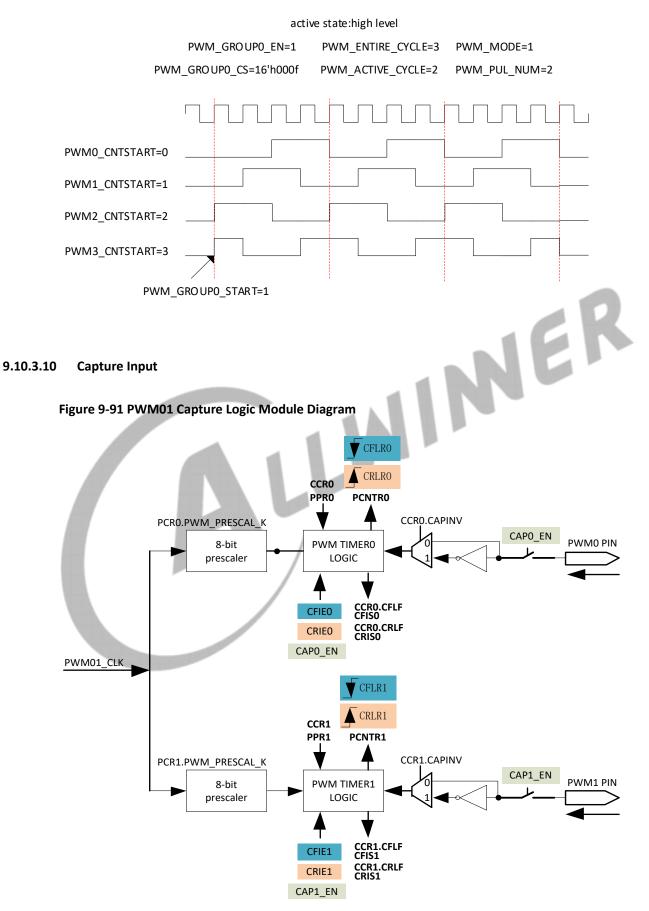
Every PWM pair has a programmable dead-time generator. When the dead-time function of the PWM pair enabled, the PWM01 output waveform is decided by PWM timer logic and DeadZone Generator. Figure 9-89 shows the output waveform.

Figure 9-89 Dead-time Output Waveform

The PWM waveform before the insertion of dead-time indicates a complementary waveform pair of noninserted dead-time in Dead Zone Generator 01.

The PWM waveform after the insertion of dead-time indicates a non-complementary PWM waveform pair inserted dead-time in a complementary waveform pair of Dead Zone Generator 01. The PWM waveform pair at last outputs to PWM0 pin and PWM1 pin.

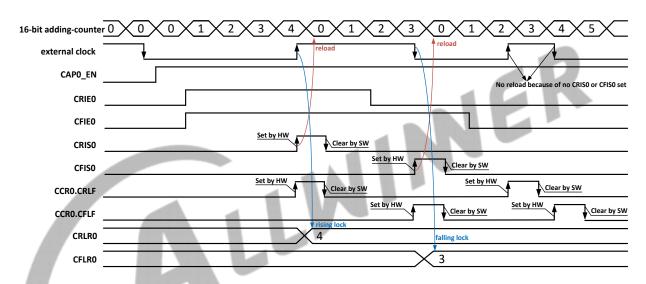
For the complementary pair of Dead Zone Generator 01, the principle of inserting dead-time is that to insert dead-time as soon as the rising edge came. If the high level time for mark(2) in the above figure is less than dead-time, then dead-time will override the high level. The setting of dead-time needs to consider the period and the duty-cycle of the output waveform. The dead-time formula is defined as follows:


Dead-time = (PWM01_CLK / PWM0_PRESCALE_K)⁻¹ * PDZINTV01

9.10.3.9 PWM Group Mode

Taking PWM Group0 as an example. The same group of PWM channel is selected to work by PGR0.CS; the same <u>PWM ENTIRE CYCLE</u>, <u>PWM ACT CYCLE</u> are set by the same clock configuration; the different <u>PWM COUNTER START</u> can output PWM group signals with the same duty-cycle and the different phase.

Figure 9-90 Group 0–3 PWM Signal Output



Besides the timer logic module of every PWM channel generates PWM output, it can be used to capture the rising edge and the falling edge of the external clock. Using the PWM0 channel as an example, the PWM0 channel has one <u>CFLR0</u> and one <u>CRLR0</u> for capturing up-counter value on the falling edge and rising edge, respectively. You can calculate the period of the external clock by <u>CFLR0</u> and <u>CRLR0</u>.

T_{high-level} = (PWM01_CLK / PWM0_PRESCALE_K)⁻¹ * CRLR0

T_{low-level} = (PWM01_CLK / PWM0_PRESCALE_K)⁻¹ * CFLR0

 $T_{period} = T_{high-level} + T_{low-level}$

Figure 9-92 PWM0 Channel Capture Timing

When the capture input function of the PWM0 channel is enabled, the PCNTR of the PWM0 channel starts to work.

When the timer logic module of PWM0 captures a rising edge, the current value of the up-counter is locked to <u>CRLR</u>0 and <u>CCR</u>0[CRLF] is set to 1. If <u>CRIE0</u> is 1, then <u>CRIS0</u> is set to 1, the PWM0 channel sends interrupt requests, and the up-counter is loaded to 0 and continues to count. If <u>CRIE0</u> is 0, the timer logic module of PWM0 captures a rising edge, <u>CRIS0</u> cannot be set to 1, the up-counter is not loaded to 0.

When the timer logic module of PWM0 captures one falling edge, the current value of PCNTR is locked to <u>CFLR</u>0 and <u>CCR</u>0[CFLF] is set to 1. If <u>CFIE0</u> is 1, then <u>CFIS0</u> is set to 1, the PWM0 channel sends interrupt requests, and the up-counter is loaded to 0 and continues to count. If <u>CFIE0</u> is 0, the timer logic module of PWM0 captures a falling edge, <u>CFIS0</u> cannot be set to 1, the up-counter is not loaded to 0.

9.10.3.11 Interrupt

The PWM supports an interrupt generation when configuring the PWM channel to PWM output or capturing input.

For PWM output function, when the controller outputs one period of PWM waveform in cycle mode, the PIS of the corresponding PWM channel is set to 1; when the controller outputs (PWM_PULNUM+1) periods of PWM waveform in pulse mode, the PIS of the corresponding PWM channel is set to 1.

The PIS bit is set to 1 automatically by hardware and cleared by software.

For capturing input function, when the timer logic module of the capture channel0 captures rising edge, and <u>CRIE0</u> is 1, then <u>CRIS0</u> is set to 1; when the timer logic module of the capture channel0 captures falling edge, and <u>CFIE0</u> is 1, then <u>CFIS0</u> is set to 1.

9.10.4 Programming Guidelines

The following working mode takes PWM01 as an example, other PWM pairs and PWM01 are consistent.

9.10.4.1 Configuring Clock

Step 1	PWM gating: When using	g PWM, write 1 to	PCGR[PWMx	CLK GATING].
- 40°	i titti gating. titlen asing	B = 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1	<u> </u>	

- Step 2 PWM clock source select: Set <u>PCCR01</u>[PWM01_CLK_SRC] to select HOSC or APB0 clock.
- Step 3 PWM clock divider: Set <u>PCCR01[PWM01_CLK_DIV_M]</u> to select different frequency division coefficient (1/2/4/8/16/32/64/128/256).
- Step 4 PWM clock bypass: Set <u>PCGR</u>[PWM_CLK_SRC_BYPASS_TO_PWM] to 1, output the PWM clock after the secondary frequency division to the corresponding PWM output pin.
- **Step 5** PWM internal clock configuration: Set <u>PCR</u>[PWM_PRESCAL_K] to select any frequency division coefficient from 1 to 256.

For the channel of complementary output and group mode, firstly, set the same clock configurations (clock source selects APBO, clock division configures the same division factor); secondly, open clock gating at the same time; thirdly, configure PWM parameters; finally, enable PWM output at the same time to ensure each channel sync.

We suggest that the two channels of the same PWM pair cannot subject to two groups because of they have the same first level clock division and gating. If must allocate based on this way, the first level of clock division of the channel used by all groups needs to set to the same coefficient and open gating at the same time. And the total module needs to be reset when the group mode regroups.

9.10.4.2 Configuring PWM

- Step 1 PWM mode: Set <u>PCR[PWM_MODE]</u> to select cycle mode or pulse mode, if pulse mode, <u>PCR[PWM_PUL_NUM]</u> needs to be configured.
- **Step 2** PWM active level: Set <u>PCR[PWM_ACT_STA]</u> to select a low level or high level.
- **Step 3** PWM duty-cycle: Configure PPR[PWM_ENTIRE_CYCLE] and PPR[PWM_ACT_CYCLE] after clock gating is opened.
- Step 4 PWM starting/stoping phase: Configure <u>PCNTR[PWM_COUNTER_START]</u> after the clock gating is enabled and before the PWM is enabled. You can verify whether the configuration was successful by reading back <u>PCNTR[PWM_COUNTER_STATUS]</u>.
- **Step 5** Enable PWM: Configure PER to select the corresponding PWM enable bit; when selecting pulse mode, **PCR**[PWM PUL START] needs to be enabled.

9.10.4.3 Configuring Deadzone

- **Step 1** Set initial value: set [PDZINTV01].
- **Step 2** Enable Deadzone: set [PWM01_DZ_CN].

9.10.4.4 Configuring Capture Input

- **Step 1** Enable capture: Configure <u>CER</u> to enable the corresponding channel.
- **Step 2** Capture mode: Configure <u>CCR[CRLF]</u> and <u>CCR[CFLF]</u> to select rising edge capture or falling edge capture, configure <u>CCR[CAPINV]</u> to select whether the input signal does reverse processing.

9.10.5 Register List

Module Name	Base Address
PWM	0x02000C00

Register Name	Offset	Description
PIER	0x0000	PWM IRQ Enable Register
PISR	0x0004	PWM IRQ Status Register
CIER	0x0010	Capture IRQ Enable Register
CISR	0x0014	Capture IRQ Status Register
PCCR01	0x0020	PWM01 Clock Configuration Register
PCCR23	0x0024	PWM23 Clock Configuration Register
PCCR45	0x0028	PWM45 Clock Configuration Register
PCCR67	0x002C	PWM67 Clock Configuration Register
PCGR	0x0040	PWM Clock Gating Register
PDZCR01	0x0060	PWM01 Dead Zone Control Register
PDZCR23	0x0064	PWM23 Dead Zone Control Register
PDZCR45	0x0068	PWM45 Dead Zone Control Register
PDZCR67	0x006C	PWM67 Dead Zone Control Register
PER	0x0080	PWM Enable Register
PGR0	0x0090	PWM Group0 Register
PGR1	0x0094	PWM Group1 Register
PGR2	0x0098	PWM Group2 Register
PGR3	0x009C	PWM Group3 Register
CER	0x00C0	Capture Enable Register
PCR	0x0100+0x0000+N*0x0020 (N= 0-7)	PWM Control Register
PPR	0x0100+0x0004+N*0x0020 (N= 0-7)	PWM Period Register
PCNTR	0x0100+0x0008+N*0x0020 (N= 0-7)	PWM Count Register
PPCNTR	0x0100+0x000C+N*0x0020 (N= 0-7)	PWM Pulse Count Register
CCR	0x0100+0x0010+N*0x0020 (N= 0-7)	Capture Control Register
CRLR	0x0100+0x0014+N*0x0020 (N= 0-7)	Capture Rise Lock Register
CFLR	0x0100+0x0018+N*0x0020 (N= 0-7)	Capture Fall Lock Register

9.10.6 Register Description

9.10.6.1 0x0000 PWM IRQ Enable Register (Default Value: 0x0000_0000)

Offset:0	x0000		Register Name: PIER
Bit	Read/Write	Default/Hex	Description
31:20	/	/	/
19	R/W	0x0	PGIE3 PWM Group 3 Interrupt Enable 0: Disable 1: Enable
18	R/W	0x0	PGIE2 PWM Group 2 Interrupt Enable 0: Disable 1: Enable
17	R/W	0x0	PGIE1 PWM Group 1 Interrupt Enable 0: Disable 1: Enable
16	R/W	0x0	PGIEO PWM Group O Interrupt Enable O: Disable 1: Enable
15:8	1	1	1
7	R/W	0x0	PCIE7 PWM Channel 7 Interrupt Enable 0: PWM Channel 7 Interrupt Disable 1: PWM Channel 7 Interrupt Enable
6	R/W	0x0	PCIE6 PWM Channel 6 Interrupt Enable 0: PWM Channel 6 Interrupt Disable 1: PWM Channel 6 Interrupt Enable
5	R/W	0x0	PCIE5 PWM Channel 5 Interrupt Enable 0: PWM Channel 5 Interrupt Disable 1: PWM Channel 5 Interrupt Enable

Offset:0	Offset:0x0000		Register Name: PIER
Bit	Read/Write	Default/Hex	Description
			PCIE4
4	R/W	0x0	PWM Channel 4 Interrupt Enable
4	ny vv	0.00	0: PWM Channel 4 Interrupt Disable
			1: PWM Channel 4 Interrupt Enable
			PCIE3
3	R/W	0x0	PWM Channel 3 Interrupt Enable
5	r/ vv	UXU	0: PWM Channel 3 Interrupt Disable
			1: PWM Channel 3 Interrupt Enable
		0x0	PCIE2
2			PWM Channel 2 Interrupt Enable
2	R/W		0: PWM Channel 2 Interrupt Disable
			1: PWM Channel 2 Interrupt Enable
			PCIE1
1	R/W	0.0	PWM Channel 1 Interrupt Enable
T	K/ W	V 0x0	0: PWM Channel 1 Interrupt Disable
			1: PWM Channel 1 Interrupt Enable
		4	PCIEO
0		0.0	PWM Channel 0 Interrupt Enable
0	R/W	/W 0x0	0: PWM Channel 0 Interrupt Disable
			1: PWM Channel 0 Interrupt Enable

9.10.6.2 0x0004 PWM IRQ Status Register (Default Value: 0x0000_0000)

Offset:0	Offset:0x0004		Register Name: PISR
Bit	Read/Write	Default/Hex	Description
31:20	/	/	/
19	R/W1C	0.0	PGIS3
19	N/ WIC	0x0	PWM Group 3 Interrupt Status
18	R/W1C	0x0	PGIS2
10	18 R/WIC		PWM Group 2 Interrupt Status
17	R/W1C	0x0	PGIS1
1/	N/ WIC	0x0	PWM Group 1 Interrupt Status
16		0.0	PGISO
10	R/W1C	0x0	PWM Group 0 Interrupt Status

Offset:0	Offset:0x0004		Register Name: PISR
Bit	Read/Write	Default/Hex	Description
15:8	1	/	/
			PIS7
			PWM Channel 7 Interrupt Status
			When the PWM channel 7 counter reaches the Entire Cycle
7	R/W1C	0x0	Value, this bit is set 1 by hardware. Writing 1 to clear this bit.
/	NY WIC	0.0	Reads 0: PWM channel 7 interrupt is not pending.
			Reads 1: PWM channel 7 interrupt is pending.
			Writes 0: No effect.
			Writes 1: Clear PWM channel 7 interrupt status.
			PIS6
			PWM Channel 6 Interrupt Status
			When the PWM channel 6 counter reaches the Entire Cycle
6	R/W1C	0x0	Value, this bit is set 1 by hardware. Writing 1 to clear this bit.
0	NY WIC	UXU	Reads 0: PWM channel 6 interrupt is not pending.
			Reads 1: PWM channel 6 interrupt is pending.
			Writes 0: No effect.
			Writes 1: Clear PWM channel 6 interrupt status.
			PIS5
			PWM Channel 5 Interrupt Status
			When the PWM channel 5 counter reaches the Entire Cycle
5	R/W1C	0x0	Value, this bit is set 1 by hardware. Writing 1 to clear this bit.
	, -		Reads 0: PWM channel 5 interrupt is not pending.
			Reads 1: PWM channel 5 interrupt is pending.
			Writes 0: No effect.
			Writes 1: Clear PWM channel 5 interrupt status.
			PIS4
			PWM Channel 4 Interrupt Status
			When the PWM channel 4 counter reaches the Entire Cycle
4	R/W1C	0x0	Value, this bit is set 1 by hardware. Writing 1 to clear this bit.
			Reads 0: PWM channel 4 interrupt is not pending.
			Reads 1: PWM channel 4 interrupt is pending.
			Writes 0: No effect.
			Writes 1: Clear PWM channel 4 interrupt status.

Offset:0	x0004		Register Name: PISR
Bit	Read/Write	Default/Hex	Description
3	R/W1C	0x0	 PIS3 PWM Channel 3 Interrupt Status When the PWM channel 3 counter reaches the Entire Cycle Value, this bit is set 1 by hardware. Writing 1 to clear this bit. Reads 0: PWM channel 3 interrupt is not pending. Reads 1: PWM channel 3 interrupt is pending. Writes 0: No effect. Writes 1: Clear PWM channel 3 interrupt status.
2	R/W1C	0x0	PIS2 PWM Channel 2 Interrupt Status When the PWM channel 2 counter reaches the Entire Cycle Value, this bit is set 1 by hardware. Writing 1 to clear this bit. Reads 0: PWM channel 2 interrupt is not pending. Reads 1: PWM channel 2 interrupt is pending. Writes 0: No effect. Writes 1: Clear PWM channel 2 interrupt status.
1	R/W1C	0x0	PIS1 PWM Channel 1 Interrupt Status When the PWM channel 1 counter reaches the Entire Cycle Value, this bit is set 1 by hardware. Writing 1 to clear this bit. Reads 0: PWM channel 1 interrupt is not pending. Reads 1: PWM channel 1 interrupt is pending. Writes 0: No effect. Writes 1: Clear PWM channel 1 interrupt status.
0	R/W1C	0x0	 PISO PWM Channel 0 Interrupt Status When the PWM channel 0 counter reaches the Entire Cycle Value, this bit is set 1 by hardware. Writing 1 to clear this bit. Reads 0: PWM channel 0 interrupt is not pending. Reads 1: PWM channel 0 interrupt is pending. Writes 0: No effect. Writes 1: Clear PWM channel 0 interrupt status.

9.10.6.3 0x0010 PWM Capture IRQ Enable Register (Default Value: 0x0000_0000)

Offset:0	Offset:0x0010		Register Name: CIER
Bit	Read/Write	Default/Hex	Description
31:16	/	/	/
			CFIE7
			If the enable bit is set to 1, when the capture channel 7 captures
15	R/W	0x0	falling edge, it generates a capture channel 7 pending.
			0: Capture channel 7 fall lock interrupt disable
			1: Capture channel 7 fall lock interrupt enable
			CRIE7
			If the enable bit is set to 1, when the capture channel 7 captures
14	R/W	0x0	rising edge, it generates a capture channel 7 pending.
			0: Capture channel 7 rise lock interrupt disable
			1: Capture channel 7 rise lock interrupt enable
			CFIE6
			If the enable bit is set to 1, when the capture channel 6 captures
13	R/W	0x0	falling edge, it generates a capture channel 6 pending.
			0: Capture channel 6 fall lock interrupt disable
			1: Capture channel 6 fall lock interrupt enable
			CRIE6
			If the enable bit is set to 1, when the capture channel 6 captures
12	R/W	0x0	rising edge, it generates a capture channel 6 pending.
			0: Capture channel 6 rise lock interrupt disable
			1: Capture channel 6 rise lock interrupt enable
			CFIE5
			If the enable bit is set to 1, when the capture channel 5 captures
11	R/W	0x0	falling edge, it generates a capture channel 5 pending.
			0: Capture channel 5 fall lock interrupt disable
			1: Capture channel 5 fall lock interrupt enable
			CRIE5
			If the enable bit is set to 1, when the capture channel 5 captures
10	R/W	0x0	rising edge, it generates a capture channel 5 pending.
			0: Capture channel 5 rise lock interrupt disable
			1: Capture channel 5 rise lock interrupt enable

Offset:0	Offset:0x0010		Register Name: CIER
Bit	Read/Write	Default/Hex	Description
9	R/W	0x0	CFIE4 If the enable bit is set to 1, when the capture channel 4 captures falling edge, it generates a capture channel 4 pending. 0: Capture channel 4 fall lock interrupt disable 1: Capture channel 4 fall lock interrupt enable
8	R/W	0x0	 CRIE4 If the enable bit is set to 1, when the capture channel 4 captures rising edge, it generates a capture channel 4 pending. 0: Capture channel 4 rise lock interrupt disable 1: Capture channel 4 rise lock interrupt enable
7	R/W	0x0	CFIE3 If the enable bit is set to 1, when the capture channel 3 captures falling edge, it generates a capture channel 3 pending. 0: Capture channel 3 fall lock interrupt disable 1: Capture channel 3 fall lock interrupt enable
6	R/W	0x0	 CRIE3 If the enable bit is set to 1, when the capture channel 3 captures rising edge, it generates a capture channel 3 pending. O: Capture channel 3 rise lock interrupt disable 1: Capture channel 3 rise lock interrupt enable
5	R/W	0x0	CFIE2 If the enable bit is set to 1, when the capture channel 2 captures falling edge, it generates a capture channel 2 pending. 0: Capture channel 2 fall lock interrupt disable 1: Capture channel 2 fall lock interrupt enable
4	R/W	0x0	 CRIE2 If the enable bit is set to 1, when the capture channel 2 captures rising edge, it generates a capture channel 2 pending. O: Capture channel 2 rise lock interrupt disable 1: Capture channel 2 rise lock interrupt enable
3	R/W	0x0	CFIE1If the enable bit is set to 1, when the capture channel 1 capturesfalling edge, it generates a capture channel 1 pending.O: Capture channel 1 fall lock interrupt disable1: Capture channel 1 fall lock interrupt enable

Offset:0	Offset:0x0010		Register Name: CIER
Bit	Read/Write	Default/Hex	Description
			CRIE1
			If the enable bit is set to 1, when the capture channel 1 captures
2	R/W	0x0	rising edge, it generates a capture channel 1 pending.
			0: Capture channel 1 rise lock interrupt disable
			1: Capture channel 1 rise lock interrupt enable
			CFIEO
			If the enable bit is set to 1, when the capture channel 0 captures
1	R/W	0x0	falling edge, it generates a capture channel 0 pending.
			0: Capture channel 0 fall lock interrupt disable
			1: Capture channel 0 fall lock interrupt enable
			CRIEO
			If the enable bit is set to 1, when the capture channel 0 captures
0	R/W	0x0	rising edge, it generates a capture channel 0 pending.
			0: Capture channel 0 rise lock interrupt disable
			1: Capture channel 0 rise lock interrupt enable

9.10.6.4 0x0014 PWM Capture IRQ Status Register (Default Value: 0x0000_0000)

Offset:0	Offset:0x0014		Register Name: CISR
Bit	Read/Write	Default/Hex	Description
31:18	1	1	
			CFIS7
			Status of the capture channel 7 falling lock interrupt
			When the capture channel 7 captures falling edge, if the fall lock
			interrupt (CFIE7) is enabled, this bit is set to 1 by hardware.
15	R/W1C	0x0	Writing 1 to clear this bit.
			Reads 0: The capture channel 7 interrupt is not pending.
			Reads 1: The capture channel 7 interrupt is pending.
			Writes 0: No effect.
			Writes 1: Clear the status of the capture channel 7 interrupt.

Offset:0	Offset:0x0014		Register Name: CISR
Bit	Read/Write	Default/Hex	Description
14	R/W1C	0x0	CRIS7 Status of the capture channel 7 rising lock interrupt When the capture channel 7 captures rising edge, if the rise lock interrupt (CRIE7) is enabled, this bit is set to 1 by hardware. Write 1 to clear this bit. Reads 0: The capture channel 7 interrupt is not pending. Reads 1: The capture channel 7 interrupt is pending. Writes 0: No effect. Writes 1: Clear the status of the capture channel 7 interrupt.
13	R/W1C	0x0	CFIS6 Status of the capture channel 6 falling lock interrupt When the capture channel 6 captures falling edge, if the fall lock interrupt (CFIE6) is enabled, this bit is set to 1 by hardware. Writing 1 to clear this bit. Reads 0: The capture channel 6 interrupt is not pending. Reads 1: The capture channel 6 interrupt is pending. Writes 0: No effect. Writes 1: Clear the status of the capture channel 6 interrupt.
12	R/W1C	0x0	CRIS6 Status of the capture channel 6 rising lock interrupt. When the capture channel 6 captures rising edge, if the rise lock interrupt (<u>CRIE6</u>) is enabled, this bit is set to 1 by hardware. Writing 1 to clear this bit. Reads 0: The capture channel 6 interrupt is not pending. Reads 1: The capture channel 6 interrupt is pending. Writes 0: No effect. Writes 1: Clear the status of the capture channel 6 interrupt.
11	R/W1C	0x0	CFIS5 Status of the capture channel 5 falling lock interrupt When the capturing channel 5 captures falling edge, if the fall lock interrupt (CFIE5) is enabled, this bit is set to 1 by hardware. Writing 1 to clear this bit. Reads 0: The capture channel 5 interrupt is not pending. Reads 1: The capture channel 5 interrupt is pending. Writes 0: No effect. Reads 1: Clear the status of the capture channel 5 interrupt.

Offset:0	Offset:0x0014		Register Name: CISR
Bit	Read/Write	Default/Hex	Description
10	R/W1C	0x0	CRIS5 Status of the capture channel 5 rising lock interrupt When the capture channel 5 captures rising edge, if the rise lock interrupt (CRIE5) is enabled, this bit is set to 1 by hardware. Writing 1 to clear this bit. Reads 0: The capture channel 5 interrupt is not pending. Reads 1: The capture channel 5 interrupt is pending. Writes 0: No effect. Writes 1: Clear the status of the capture channel 5 interrupt.
9	R/W1C	0x0	CFIS4 Status of the capture channel 4 falling lock interrupt When the capture channel 4 captures falling edge, if the fall lock interrupt (CFIE4) is enabled, this bit is set to 1 by hardware. Writing 1 to clear this bit. Reads 0: The capture channel 4 interrupt is not pending. Reads 1: The capture channel 4 interrupt is pending. Writes 0: No effect. Writes 1: Clear the status of the capture channel 4 interrupt.
8	R/W1C	0x0	CRIS4 Status of the capture channel 4 rising lock interrupt. When the capture channel 4 captures rising edge, if the rise lock interrupt (CRIE4) is enabled, this bit is set to 1 by hardware. Writing 1 to clear this bit. Reads 0: The capture channel 4 interrupt is not pending. Reads 1: The capture channel 4 interrupt is pending. Writes 0: No effect. Writes 1: Clear the status of the capture channel 4 interrupt status.
7	R/W1C	0x0	CFIS3 Status of the capture channel 3 falling lock interrupt. When the capture channel 3 captures falling edge, if the fall lock interrupt (CFIE3) is enabled, this bit is set to 1 by hardware. Writing 1 to clear this bit. Reads 0: The capture channel 3 interrupt is not pending. Reads 1: The capture channel 3 interrupt is pending. Writes 0: no effect. Writes 1: Clear the status of the capture channel 3 interrupt.

Offset:0	Offset:0x0014		Register Name: CISR
Bit	Read/Write	Default/Hex	Description
6	R/W1C	0x0	CRIS3 Status of the capture channel 3 rising lock interrupt When the capture channel 3 captures rising edge, if the rise lock interrupt (CRIE3) is enabled, this bit is set to 1 by hardware. Writing 1 to clear this bit. Reads 0: The capture channel 3 interrupt is not pending. Reads 1: The capture channel 3 interrupt is pending. Writes 0: no effect. Writes 1: Clear the status of the capture channel 3 interrupt.
5	R/W1C	0x0	CFIS2 Status of the capture channel 2 falling lock interrupt When the capture channel 2 captures falling edge, if the fall lock interrupt (CFIE2) is enabled, this bit is set to 1 by hardware. Writing 1 to clear this bit. Reads 0: The capture channel 2 interrupt is not pending. Reads 1: The capture channel 2 interrupt is pending. Writes 0: no effect. Writes 1: Clear the status of the capture channel 2 interrupt.
4	R/W1C	0x0	CRIS2 Status of the capture channel 2 rising lock interrupt. When the capture channel 2 captures rising edge, if the rise lock interrupt (CRIE2) is enabled, this bit is set to 1 by hardware. Writing 1 to clear this bit. Reads 0: The capture channel 2 interrupt is not pending. Reads 1: The capture channel 2 interrupt is pending. Writes 0: no effect. Writes 1: Clear the status of the capture channel 2 interrupt.
3	R/W1C	0x0	CFIS1 Status of the capture channel 1 falling lock interrupt When the capture channel 1 captures falling edge, if the fall lock interrupt (CFIE1) is enabled, this bit is set to 1 by hardware. Writing 1 to clear this bit. Reads 0: The capture channel 1 interrupt is not pending. Reads 1: The capture channel 1 interrupt is pending. Writes 0: no effect. Writes 1: Clear the status of the capture channel 1 interrupt.

Offset:0	Offset:0x0014		Register Name: CISR
Bit	Read/Write	Default/Hex	Description
			CRIS1
			Status of the capture channel 1 rising lock interrupt.
			When the capture channel 1 captures rising edge, if the rise lock
			interrupt (CRIE1) is enabled, this bit is set to 1 by hardware.
2	R/W1C	0x0	Writing 1 to clear this bit.
			Reads 0: The capture channel 1 interrupt is not pending.
			Reads 1: The capture channel 1 interrupt is pending.
			Writes 0: no effect.
			Writes 1: Clear the status of the capture channel 1 interrupt.
			CFISO
			Status of the capture channel 0 falling lock interrupt
			When the capture channel 0 captures falling edge, if the fall lock
			interrupt (CFIEO) is enabled, this bit is set to 1 by hardware.
1	R/W1C	0x0	Writing 1 to clear this bit.
			Reads 0: The capture channel 0 interrupt is not pending.
			Reads 1: The capture channel 0 interrupt is pending.
			Writes 0: no effect.
			Writes 1: Clear the status of the capture channel 0 interrupt.
			CRISO
			Status of the capture channel 0 rising lock interrupt
			When the capture channel 0 captures rising edge, if the rise lock
			interrupt (CRIEO) is enabled, this bit is set 1 by hardware. Writing
0	R/W1C	0x0	1 to clear this bit.
			Reads 0: The capture channel 0 interrupt is not pending.
			Reads 1: The capture channel 0 interrupt is pending.
			Writes 0: no effect.
			Writes 1: Clear the status of the capture channel 0 interrupt.

9.10.6.5 0x0020 PWM01 Clock Configuration Register (Default Value: 0x0000_0000)

Offset:0	x0020		Register Name: PCCR01
Bit	Read/Write	Default/Hex	Description
31:9	1	/	/

Offset:0x0020			Register Name: PCCR01
Bit	Read/Write	Default/Hex	Description
			PWM01_CLK_SRC
			Select PWM01 Clock Source
8:7	R/W	0x0	00: HOSC
			01: APB0
			Others: Reserved
6:4	/	/	1
			PWM01_CLK_DIV_M
		0x0	PWM01 Clock Divide M
			0000: /1
			0001: /2
	R/W		0010: /4
3:0			0011: /8
5.0			0100: /16
			0101: /32
			0110: /64
			0111: /128
			1000: /256
			Others: Reserved

9.10.6.6 0x0024 PWM23 Clock Configuration Register (Default Value: 0x0000_0000)

Offset:0	x0024		Register Name: PCCR23
Bit	Read/Write	Default/Hex	Description
31:9	/	1	/
			PWM23_CLK_SRC_SEL
			Select PWM23 Clock Source
8:7	R/W	0x0	00: HOSC
			01: APB0
			Others: Reserved
6:4	/	/	/

Offset:0x0024			Register Name: PCCR23		
Bit	Read/Write	Default/Hex	Description		
			PWM23_CLK_DIV_M		
			PWM23 Clock Divide M		
			0000: /1		
			0001: /2		
		0x0	0010: /4		
2.0	R/W		0011: /8		
3:0			0100: /16		
			0101: /32		
			0110: /64		
			0111: /128		
			1000: /256		
			Others: Reserved		
0x0028 P\	0x0028 PWM45 Clock Configuration Register (Default Value: 0x0000_0000)				

9.10.6.7 0x0028 PWM45 Clock Configuration Register (Default Value: 0x0000_0000)

Offset:0x0028			Register Name: PCCR45	
Bit	Read/Write	Default/Hex	Description	
31:9	1	/		
			PWM45_CLK_SRC_SEL	
			Select PWM45 Clock Source	
8:7	R/W	0x0	00: HOSC	
			01: APB0	
			Others: Reserved	
6:4	/	1	/	

Offset:0x0028			Register Name: PCCR45		
Bit	Read/Write	Default/Hex	Description		
			PWM45_CLK_DIV_M		
			PWM45 Clock Divide M		
			0000: /1		
			0001: /2		
		0x0	0010: /4		
2.0	R/W		0011: /8		
3:0			0100: /16		
			0101: /32		
			0110: /64		
			0111: /128		
			1000: /256		
			Others: Reserved		
0x002C P\	0x002C PWM67 Clock Configuration Register (Default Value: 0x0000_0000)				

9.10.6.8 0x002C PWM67 Clock Configuration Register (Default Value: 0x0000_0000)

Offset:0x002C			Register Name: PCCR67
Bit	Read/Write	Default/Hex	Description
31:9	1	/	1
	_		PWM67_CLK_SRC_SEL
			Select PWM67 Clock Source
8:7	R/W	0x0	00: HOSC
			01: APB0
			Others: Reserved
6:4	/	1	/

Offset	t:0x002C		Register Name: PCCR67
Bit	Read/Write	Default/Hex	Description
			PWM67_CLK_DIV_M
			PWM67 Clock Divide M
			0000: /1
			0001: /2
		0x0	0010: /4
2.0	D (M)		0011: /8
3:0	R/W		0100: /16
			0101: /32
			0110: /64
			0111: /128
			1000: /256
			Others: Reserved
x0040 PWM Clock Gating Register (Default Value: 0x0000_0000)			
0	h. 0./0040		Desister Name: DCCD

9.10.6.9 0x0040 PWM Clock Gating Register (Default Value: 0x0000_0000)

Offset: 0x	0040		Register Name: PCGR
Bit	Read/Write	Default/Hex	Description
31:24	1	/	
			PWM7_CLK_BYPASS
23	D/14/	0x0	Bypass clock source (after pre-scale) to PWM7 output
25	R/W	UXU	0: not bypass
			1: bypass
			PWM6_CLK_BYPASS
22	R/W	0x0	Bypass clock source (after pre-scale) to PWM6 output
22			0: not bypass
			1: bypass
			PWM5_CLK_BYPASS
21	R/W	0x0	Bypass clock source (after pre-scale) to PWM5 output
21			0: not bypass
			1: bypass
			PWM4_CLK_BYPASS
20	R/W	0x0	Bypass clock source (after pre-scale) to PWM4 output
20			0: not bypass
			1: bypass

Offset: 0x0040			Register Name: PCGR
Bit	Read/Write	Default/Hex	Description
19	R/W	0x0	PWM3_CLK_BYPASS Bypass clock source (after pre-scale) to PWM3 output
			0: not bypass 1: bypass
	R/W	0x0	PWM2_CLK_BYPASS
			Bypass clock source (after pre-scale) to PWM2 output
18			0: not bypass
			1: bypass
		0x0	PWM1_CLK_BYPASS
17	R/W		Bypass clock source (after pre-scale) to PWM1 output
1/	r/ vv		0: not bypass
			1: bypass
			PWM0_CLK_BYPASS
16	D /\\/	0x0	Bypass clock source (after pre-scale) to PWM0 output
10	R/W		0: not bypass
			1: bypass
15:8	1	1	
	R/W	0x0	PWM7_CLK_GATING
7			Gating clock for PWM7
			0: Mask
			1: Pass
	R/W	0x0	PWM6_CLK_GATING
6			Gating clock for PWM6
J			0: Mask
			1: Pass
	R/W	0x0	PWM5_CLK_GATING
5			Gating clock for PWM5
			0: Mask
			1: Pass
4	R/W	0x0	PWM4_CLK_GATING
			Gating clock for PWM4
			0: Mask
			1: Pass

Offset: 0x0040			Register Name: PCGR
Bit	Read/Write	Default/Hex	Description
3	R/W	0x0	PWM3_CLK_GATING
			Gating clock for PWM3
			0: Mask
			1: Pass
2	R/W	0x0	PWM2_CLK_GATING
			Gating clock for PWM2
			0: Mask
			1: Pass
1	R/W	0x0	PWM1_CLK_GATING
			Gating clock for PWM1
			0: Mask
			1: Pass
0	R/W	0x0	PWM0_CLK_GATING
			Gating clock for PWM0
			0: Mask
			1: Pass

9.10.6.10 0x0060 PWM01 Dead Zone Control Register (Default Value: 0x0000_0000)

Offset:0	x0060		Register Name: PDZCR01
Bit	Read/Write	Default/Hex	Description
31:16	1	1	1
15:8	R/W	0x0	PWM01_DZ_INTV
			PWM01 Dead Zone Interval Value
7:1	1	1	/
0	R/W	0x0	PWM01_DZ_EN
			PWM01 Dead Zone Enable
			0: Dead Zone disable
			1: Dead Zone enable

cR

9.10.6.11 0x0064 PWM23 Dead Zone Control Register (Default Value: 0x0000_0000)

Offset:0	x0064		Register Name: PDZCR23
Bit	Read/Write	Default/Hex	Description
31:16	1	/	/
15.0		0x0	PWM23_DZ_INTV
15:8	R/W		PWM23 Dead Zone Interval Value
7:1	/	/	/
		0x0	PWM23_DZ_EN
0	R/W		PWM23 Dead Zone Enable
0	κ/ νν		0: Dead Zone disable
			1: Dead Zone enable

9.10.6.12 0x0068 PWM45 Dead Zone Control Register (Default Value: 0x0000_0000)

Offset:0x0068			Register Name: PDZCR45
Bit	Read/Write	Default/Hex	Description
31:16	1	1	
15.0	R/W	0.0	PWM45_DZ_INTV
15:8	R/ W	0x0	PWM45 Dead Zone Interval Value
7:1	/	1	1
		0x0	PWM45_DZ_EN
0	R/W		PWM45 Dead Zone Enable
0			0: Dead Zone disable
			1: Dead Zone enable

9.10.6.13 0x006C PWM67 Dead Zone Control Register (Default Value: 0x0000_0000)

Offset:0	x006C		Register Name: PDZCR67
Bit	Read/Write	Default/Hex	Description
31:16	/	/	/
15.0	D (M)		PWM67_DZ_INTV
15:8	R/W	0x0	PWM67 Dead Zone Interval Value
7:1	/	/	/

Offset:0x006C			Register Name: PDZCR67
Bit	Read/Write	Default/Hex	Description
	R/W	0x0	PWM67_DZ_EN
			PWM67 Dead Zone Enable
0			0: Dead Zone disable
			1: Dead Zone enable

9.10.6.14 0x0080 PWM Enable Register (Default Value: 0x0000_0000)

Offset:0x0080			Register Name: PER
Bit	Read/Write	Default/Hex	Description
31:8	/	/	/
			PWM7_EN
			When PWM is enabled, the 16-bit up-counter starts working and
7	R/W	0x0	PWM channel7 is permitted to output PWM waveform.
			0: PWM disable
			1: PWM enable
			PWM6_EN
			When PWM is enabled, the 16-bit up-counter starts working and
6	R/W	0x0	PWM channel6 is permitted to output PWM waveform.
			0: PWM disable
			1: PWM enable
			PWM5_EN
			When PWM is enabled, the 16-bit up-counter starts working and
5	R/W	0x0	PWM channel5 is permitted to output PWM waveform.
			0: PWM disable
			1: PWM enable
			PWM4_EN
			When PWM is enabled, the 16-bit up-counter starts working and
4	R/W	0x0	PWM channel4 is permitted to output PWM waveform.
			0: PWM disable
			1: PWM enable
			PWM3_EN
			When PWM is enabled, the 16-bit up-counter starts working and
3	R/W	0x0	PWM channel3 is permitted to output PWM waveform.
			0: PWM disable
			1: PWM enable

Confidential

Offset:0x0080			Register Name: PER
Bit	Read/Write	Default/Hex	Description
			PWM2_EN
			When PWM is enabled, the 16-bit up-counter starts working and
2	R/W	0x0	PWM channel2 is permitted to output PWM waveform.
			0: PWM disable
			1: PWM enable
			PWM1_EN
			When PWM is enabled, the 16-bit up-counter starts working and
1	R/W	0x0	PWM channel1 is permitted to output PWM waveform.
			0: PWM disable
			1: PWM enable
		0x0	PWM0_EN
			When PWM is enabled, the 16-bit up-counter starts working and
0	R/W		PWM channel0 is permitted to output PWM waveform.
			0: PWM disable
			1: PWM enable
L			

9.10.6.15 0x0090 PWM Group0 Register (Default Value: 0x0000_0000)

Offset: 0	x0090		Register Name: PGR0
Bit	Read/Write	Default/Hex	Description
31:18	/	1	1
			PWMG0_START
17	R/WAC	0x0	The PWM channels selected in PWMG0_CS start to output PWM
			waveform at the same time.
16	R/W	0x0	PWMG0_EN
10	r, vv		PWM Group0 Enable.
15.0	R/W		PWMG0_CS
15:0	r, vv	0x0	If bit[i] is set, the PWM i is selected as one channel of PWM Group0.

9.10.6.16 0x0094 PWM Group1 Register (Default Value: 0x0000_0000)

Offset: 0x0094			Register Name: PGR1
Bit	Read/Write	Default/Hex	Description
31:18	/	/	/

Offset: 0x0094			Register Name: PGR1
Bit	Read/Write	Default/Hex	Description
		0x0	PWMG1_START
17	R/WAC		The PWM channels selected in PWMG1_CS start to output PWM
			waveform at the same time.
10	R/W	0x0	PWMG1_EN
16			PWM Group1 Enable.
15:0	R/W	0x0	PWMG1_CS
			If bit[i] is set, the PWM i is selected as one channel of PWM Group1.

9.10.6.17 0x0098 PWM Group2 Register (Default Value: 0x0000_0000)

Offset: 0x0098			Register Name: PGR2
Bit	Read/Write	Default/Hex	Description
31:18	/	/	
17	R/WAC	0x0	PWMG2_START The PWM channels selected in PWMG2_CS start to output PWM waveform at the same time.
16	R/W	0x0	PWMG2_EN PWM Group2 Enable.
15:0	R/W	0x0	PWMG2_CS If bit[i] is set, the PWM i is selected as one channel of PWM Group2.

9.10.6.18 0x009C PWM Group3 Register (Default Value: 0x0000_0000)

Offset: 0x009C			Register Name: PGR3
Bit	Read/Write	Default/Hex	Description
31:18	/	/	/
			PWMG3_START
17	R/WAC	0x0	The PWM channels selected in PWMG3_CS start to output PWM
			waveform at the same time.
16	R/W	0x0	PWMG3_EN
10			PWM Group3 Enable.
15.0		0x0	PWMG3_CS
15:0	R/W		If bit[i] is set, the PWM i is selected as one channel of PWM Group3.

9.10.6.19 0x00C0 Capture Enable Register (Default Value: 0x0000_0000)

Offset: 0	x00C0		Register Name: CER
Bit	Read/Write	Default/Hex	Description
31:8	/	/	/
7	R/W	0x0	CAP7_EN When enabling the capture function, the 16-bit up-counter starts working, and the capture channel7 is permitted to capture external falling edge or rising edge. 0: Capture disable 1: Capture enable
6	R/W	0x0	CAP6_EN When enabling the capture function, the 16-bit up-counter starts working, and the capture channel6 is permitted to capture external falling edge or rising edge. 0: Capture disable 1: Capture enable
5	R/W	0x0	CAP5_EN When enabling the capture function, the 16-bit up-counter starts working, and the capture channel5 is permitted to capture external falling edge or rising edge. 0: Capture disable 1: Capture enable
4	R/W	0x0	CAP4_EN When enabling the capture function, the 16-bit up-counter starts working, and the capture channel4 is permitted to capture external falling edge or rising edge. 0: Capture disable 1: Capture enable
3	R/W	0x0	CAP3_EN When enabling the capture function, the 16-bit up-counter starts working, and the capture channel3 is permitted to capture external falling edge or rising edge. 0: Capture disable 1: Capture enable

Offset: 0x00C0			Register Name: CER
Bit	Read/Write	Default/Hex	Description
2	R/W	0x0	CAP2_EN When enabling the capture function, the 16-bit up-counter starts working, and the capture channel2 is permitted to capture external
2			falling edge or rising edge. 0: Capture disable 1: Capture enable
1	R/W	0x0	CAP1_EN When enabling the capture function, the 16-bit up-counter starts working, and the capture channel1 is permitted to capture external falling edge or rising edge. 0: Capture disable 1: Capture enable
0	R/W	0x0	CAPO_EN When enabling the capture function, the 16-bit up-counter starts working, and the capture channel is permitted to capture external falling edge or rising edge. 0: Capture disable 1: Capture enable

9.10.6.20 0x0100 + N*0x20 PWM Control Register (Default Value: 0x0000_0000)

Offset	0x0100+0x0+N	I*0x20 (N=0∼7)	Register Name: PCR
Bit	Read/Write	Default/Hex	Description
			PWM_PUL_NUM
31:16	R/W	0x0	In pulse mode, the PWM outputs pulse for PWM_CYCLE_NUM+1
			times and then stops.
15:12	/	/	/
			PWM_PERIOD_RDY
11	R	0x0	PWM Period Register Ready
TT			0: PWM period register is ready to write
			1: PWM period register is busy

Offset	:0x0100+0x0+N	I*0x20 (N=0∼7)	Register Name: PCR
Bit	Read/Write	Default/Hex	Description
			PWM_PUL_START
			PWM Pulse Output Start
			0: No effect
10	R/WAC	0x0	1: Output pulse for PWM_CYCLE_NUM+1.
			After finishing configuration for the output pulse, set this bit once,
			then PWM would output waveform. After the waveform is finished,
			the bit will be cleared automatically.
			PWM_MODE
9	R/W	0x0	PWM Output Mode Select
9	r, vv		0: Cycle mode
			1: Pulse mode
			PWM_ACT_STA
•	D () M		PWM Active State
8	R/W	0x0	0: Low Level
			1: High Level
			PWM_PRESCAL_K
			PWM pre-scale K, actual pre-scale is (K+1).
			K = 0, actual pre-scale: 1
7:0	R/W	040	K = 1, actual pre-scale: 2
7:0	K/ VV	0x0	K = 2, actual pre-scale: 3
			K = 3, actual pre-scale: 4
			./
			K = 255, actual pre-scale: 256
100			

9.10.6.21 0x0104 + N*0x20 PWM Period Register (Default Value: 0x0000_0000)

Offset:	Offset:0x0100+0x04+N*0x20 (N=0~7)		Register Name: PPR
Bit	Read/Write	Default/Hex	Description
			PWM_ENTIRE_CYCLE
	R/W	0x0	Number of the entire cycles in the PWM clock.
			0: 1 cycle
31:16			1: 2 cycles
01.10			
			N: N+1 cycles
			If the register needs to be modified dynamically, the PCLK should
			be faster than the PWM CLK.

Offset:0x0100+0x04+N*0x20 (N=0~7)			Register Name: PPR
Bit	Read/Write	Default/Hex	Description
		0x0	PWM_ACT_CYCLE
	R/W		Number of the active cycles in the PWM clock.
15:0			0: 0 cycle
15.0			1: 1 cycle
			N: N cycles

9.10.6.22 0x0108 + N*0x20 PWM Counter Register (Default Value: 0x0000_0000)

Offset:	0x0100+0x08+	N*0x20 (N=0~7)	Register Name: PCNTR
Bit	Read/Write	Default/Hex	Description
31:16	R/W	0x0	PWM_COUNTER_START
51.10			PWM counter value is set for phase control.
	R	0x0	PWM_COUNTER_STATUS
15:0			On PWM output or capture input, reading this register could get
			the current value of the PWM 16-bit up-counter.

9.10.6.23 0x010C + N*0x20 PWM Pulse Counter Register (Default Value: 0x0000_0000)

Offset: 0)x0100+0x0C+I	N*0x20 (N=0~7)	Register Name: PPCNTR
Bit	Read/Write	Default/Hex	Description
31:16	/	1	/
			PWM_PUL_COUNTER_STATUS
15:0	R	0x0	On PWM output, reading this register could get the current
			value of the PWM pulse counter.

9.10.6.24 0x0110 + N*0x20 PWM Capture Control Register (Default Value: 0x0000_0000)

Offset:0	x0100+0x10+N	*0x20 (N=0~7)	Register Name: CCR
Bit	Read/Write	Default/Hex	Description
31:5	/	/	/

Offset:0x0100+0x10+N*0x20 (N=0~7)			Register Name: CCR
Bit	Read/Write	Default/Hex	Description
			CRLF
			When the capture channel captures a rising edge, the current
4	R/W1C	0x0	value of the 16-bit up-counter is latched to CRLR, and then this bit
			is set 1 by hardware.
			Write 1 to clear this bit.
			CFLF
			When the capture channel captures a falling edge, the current
3	R/W1C	0x0	value of the 16-bit up-counter is latched to CFLR, and then this bit
			is set 1 by hardware.
			Write 1 to clear this bit.
2	R/W	0x0	CRTE
2			Rising edge capture trigger enable
			CFTE
1	R/W	0x0	Falling edge capture trigger enable
			CAPINV
			Inverse the signal input from capture channel before 16-bit
0	R/W	0x0	counter of capture channel.
			0: not inverse
			1: inverse

9.10.6.25 0x0114 + N*0x20 PWM Capture Rise Lock Register (Default Value: 0x0000_0000)

Offset:	0x0100+0x14+	N*0x20 (N=0~7)	Register Name: CRLR
Bit	Read/Write	Default/Hex	Description
31:16		1	/
			CRLR
15:0	R	0x0	When the capture channel captures a rising edge, the current
			value of the 16-bit up-counter is latched to the register.

9.10.6.26 0x0118 + N*0x20 PWM Capture Fall Lock Register (Default Value: 0x0000_0000)

Offset:	0x0100+0x18+	N*0x20 (N=0~7)	Register Name: CFLR
Bit	Read/Write	Default/Hex	Description
31:16	/	/	/

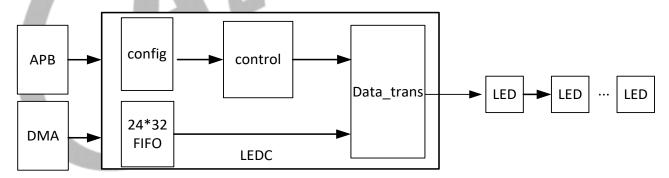
Confidential

Offset:0x0100+0x18+N*0x20 (N=0~7)			Register Name: CFLR
Bit	Read/Write	Default/Hex	Description
15:0	R	0x0	CFLR When the capture channel captures a falling edge, the current value of the 16-bit up-counter is latched to the register.

9.11 LEDC

9.11.1 Overview

The LEDC is used to control the external LED lamp.


The LEDC has the following features:

- Configurable LED output high-/low-level width
- Configurable LED reset time
- LEDC data supports DMA configuration mode and CPU configuration mode
- Maximum 1024 LEDs serial connect
- LED data transfer rate up to 800 kbit/s
- Configurable RGB display mode
- The default level of non-data output is configurable

9.11.2 Block Diagram

The following figure shows a block diagram of the LEDC.

Figure 9-93 LEDC Block Diagram

INER

LEDC contains the following sub-blocks:

Table 9-32 LEDC Sub-blocks

Sub-block	Description	
config	register configuration	
control	LEDC timing control and status control	
FIFO	24-bit width x 32 depth	
Data_trans	Convert input data to the 0 and 1 characters of LED	

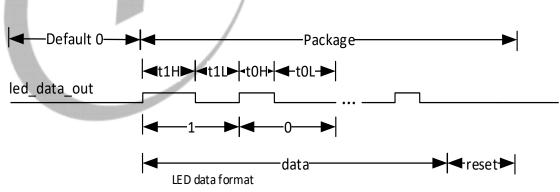
9.11.3 Functional Description

9.11.3.1 External Signals

The following table describes the external signals of the LEDC.

Table 9-33 LEDC External Signals

Signal	Description	Туре
LEDC-DO	Intelligent Control LED Signal Output	0


9.11.3.2 Clock Sources

The following table describes the clock sources of the LEDC.

Table 9-34 LEDC Clock Sources

The following table desc	indes the clock sources of the LEDC.	
Table 9-34 LEDC Clock Sources		
Clock Sources	Description	
HOSC	24 MHz	
PLL_PERI(1X)	Peripheral Clock. The default value is 600 MHz	

9.11.3.3 LEDC Timing

Figure 9-94 LEDC Package Output Timing Diagram

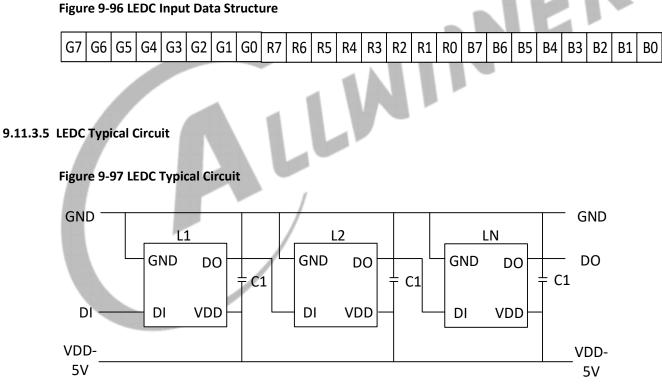
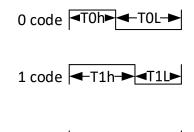


Figure 9-95 LEDC 1-frame Output Timing Diagram

9.11.3.4 LEDC Input Data Structure

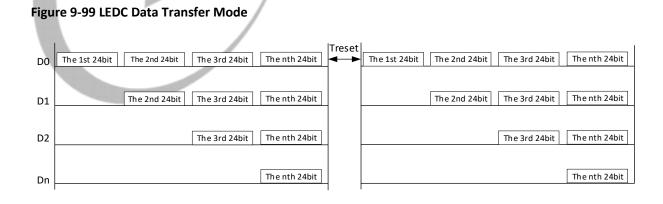
The RGB mode of LEDC data is configurable. By default, the data is sent in GRB order, and the higher bit is transmitted first.



C1 is the bypass capacitor of LED light, and its value is usually 100 nF.

9.11.3.6 LEDC Data Input Code

Figure 9-98 LEDC Data Input Code



Reset code Treset-

9.11.3.7 LEDC Data Transfer Time

The time parameter of the typical LED specification shows as follows.				
тон	0 code, high-level time	220 ns to 380 ns		
TOL	0 code, low-level time	580 ns to 1.6 us		
T1H	1 code, high-level time	580 ns to 1.6 us		
T1L	1 code, low-level time	220 ns to 420 ns		
RESET	Frame unit, low-level time	> 280 us		

9.11.3.8 LEDC Data Transfer Mode

9.11.3.9 LEDC Parameter

- 1. PAD rate > 800 kbit/s
- 2. LED number supported:

 T_{0-code} : 800 ns to 1980 ns, T_{1-code} : 800 ns to 2020 ns

When the LED refresh rate is 30 frame/s, LED number supported is (1 s/30-280 us)/((800 ns to 2020 ns)*24)

=1024 ↓to 681.

When the LED refresh rate is 60 frame/s, LED number supported is (1 s/60-280 us)/((800 ns to 2020 ns)*24) =853 +to 338.

9.11.3.10 LEDC Data Transfer

The LEDC supports DMA data transfer mode or CPU data transfer mode. The DMA data transfer mode is set by LEDC_DMA_EN.

Data transfer in DMA mode

When the valid space of internal FIFO is greater than the setting FIFO free space threshold, the LEDC sends DMA_REQ to require DMA to transfer data from DRAM to LEDC. The maximum data transfer size in DMA mode is 16 words. (The internal FIFO level is 32.)

Data transfer in CPU mode

When the valid space of internal FIFO is greater than the setting FIFO free space threshold, the LEDC sends LEDC_CPUREQ_INT to require CPU to transfer data to LEDC. The transfer data size in CPU mode is controlled by software. The internal FIFO destination address is 0x06700014. The data width is 32-bit. (The lower 24-bit is valid.)

9.11.3.11 LEDC Interrupt

FIFO overflow interrupt.	Module Name	Description		
FIFO_OVERFLOW_INTspace of LED FIFO, the LEDC will be in data loss state. At this till software needs to deal with the abnormal situation. The process mode is as follows. The software can query LED_FIFO_DATA_REG to determine when the software	FIFO_OVERFLOW_INT	 FIFO overflow interrupt. The data written by external is more than the maximum storage space of LED FIFO, the LEDC will be in data loss state. At this time, software needs to deal with the abnormal situation. The processing mode is as follows. The software can query LED_FIFO_DATA_REG to determine which data has been stored in the internal FIFO of LEDC. The LEDC 		

Module Name	Description			
	Wait for data timeout interrupt			
	When internal FIFO of LEDC cannot get data because of some			
	abnormal situation, the timeout interrupt is set after			
	led_wait_data_time, now the LEDC is in WAIT_DATA state, and the			
WAITDATA_TIMEOUT_INT	LEDC outputs a level state configured by LED_POLARITY; in the			
	course of wait_data, if the new data arrives, the LEDC will continue to send data, at this time the software needs to notice whether the			
	waiting time of the LEDC exceeds the operation time of reset. If the			
	waiting time of the LEDC exceeds the operation time of reset (this			
	is equivalent to reset operation sent by LEDC), the LED may enter			
	in refresh state, the data has not been sent.			
	FIFO request CPU data interrupt			
FIFO_CPUREQ_INT	When FIFO data is less than a threshold, the interrupt will be			
	reported to the CPU.			
	Data transfer complete interrupt			
LEDC_TRANS_FINISH_INT	The value indicates that the data configured as total_data_length			
	has been transferred completely.			
LEDC interrupt usage scenario:				
CPU mode				

CPU mode

The software can enable GLOBAL_INT_EN, FIFO_CPUREQ_INT_EN, WAITDATA_TIMEOUT_INT_EN, FIFO_OVERFLOW_INT_EN, LEDC_TRANS_FINISH_INT_EN, and cooperate with LEDC_FIFO_TRIG_LEVEL to use. When FIFO_CPUREQ_INT is set to 1, the software can configure data of LEDC_FIFO_TRIG_LEVEL to LEDC.

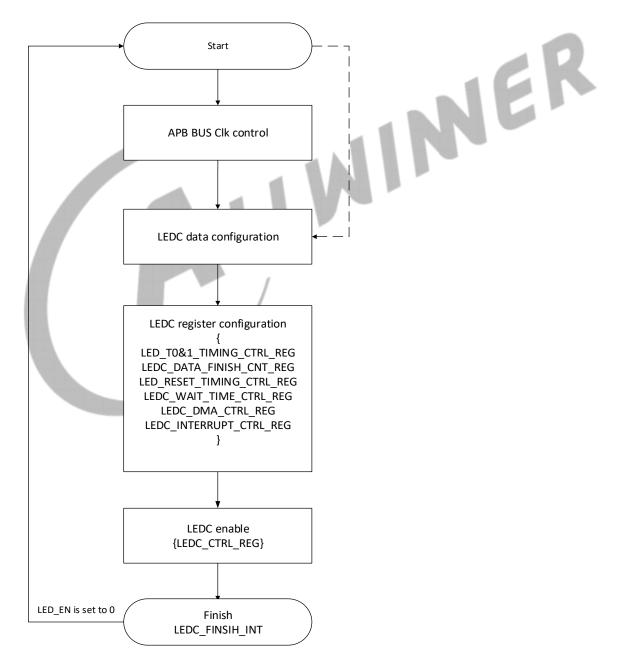
DMA mode

The software can enable GLOBAL_INT_EN, WAITDATA_TIMEOUT_INT_EN, FIFO_OVERFLOW_INT_EN, LEDC_TRANS_FINISH_INT_EN, and cooperate with LEDC_FIFO_TRIG_LEVEL to use. When DMA receives LEDC DMA_REQ, DMA can transfer data of LEDC_FIFO_TRIG_LEVEL to LEDC.

9.11.4 Programming Guidelines

9.11.4.1 LEDC Normal Configuration Process

- **Step 1** Configure LEDC_CLK and bus pclk.
- **Step 2** Configure the written LEDC data.

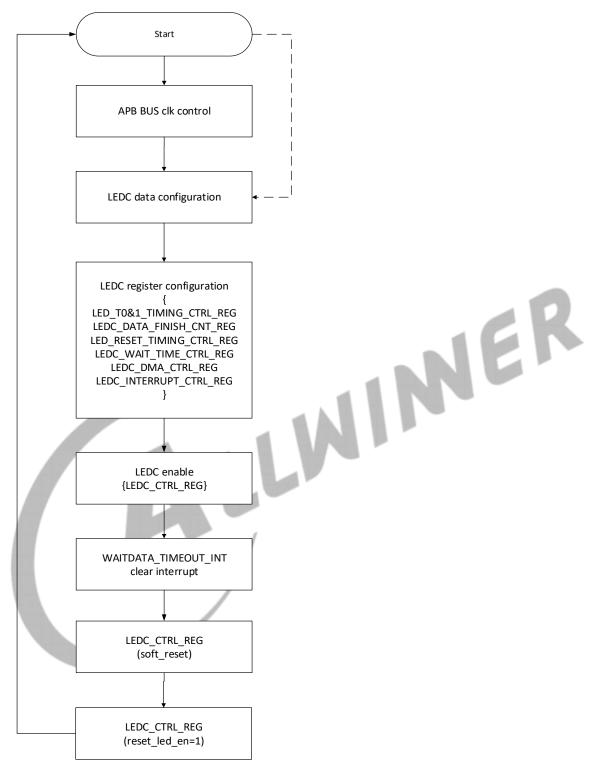


- Step 3
 Configure
 LED_T01_TIMING_CTRL_REG,
 LEDC_DATA_FINISH_CNT_REG,

 LED_RESET_TIMING_CTRL_REG,
 LEDC_WAIT_TIME0_CTRL_REG,
 LEDC_DMA_CTRL_REG,

 LEDC_INTERRUPT_CTRL_REG.
 Configure 0-code, 1-code, reset time, LEDC waiting time, and the number of external connected LEDC and the threshold of DMA transfer data.
- **Step 4** Configure <u>LEDC_CTRL_REG</u> to enable LEDC_EN, the LEDC will start to output data.
- Step 5 When the LEDC interrupt is pulled up, it indicates the configured data has transferred complete, at this time LED_EN will be set to 0, and the read/write point of LEDC FIFO is cleared to 0.
- **Step 6** Repeat step1, 2, 3, 4 to re-execute a new round of configuration, enable LEDC_EN, the LEDC will start new data transfer.

Figure 9-100 LEDC Normal Configuration Process

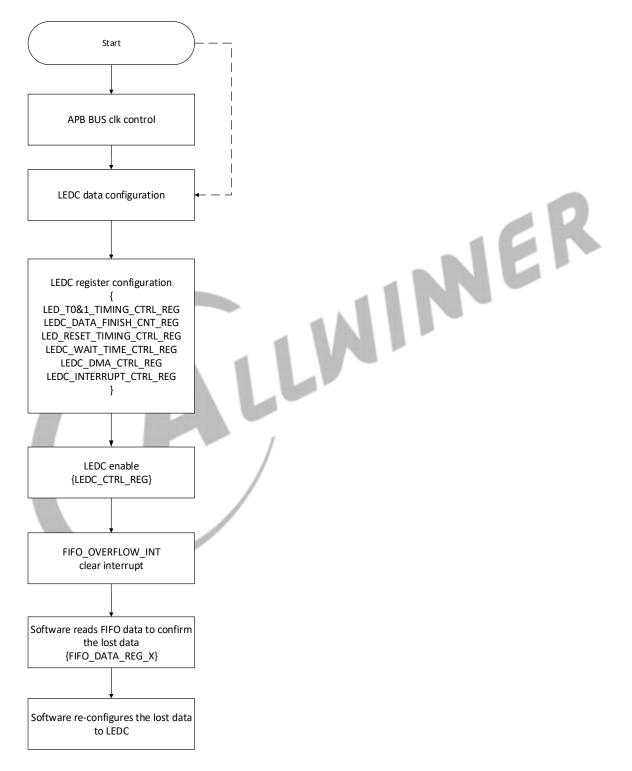


9.11.4.2 LEDC Abnormal Scene Processing Flow

WAITDATA_TIMEOUT Abnormal Status

- **Step 1** When WAITDATA_TIMEOUT_INT appears, it indicates the internal FIFO data request of LEDC cannot obtain a response, at this time if the default output level is low, then the external LED may think there was a reset operation and cause LED data to be flushed incorrectly.
- Step 2 The LEDC needs to be performed soft_reset operation (LEDC_SOFT_RESET=1); after soft_reset, the LEDC_EN will be pulled-down automatically, all internal status register and control state machine will return to the idle state, the LEDC FIFO read & write point is cleared to 0, the LEDC interrupt is cleared.
- **Step 3** Setting reset_led_en to 1 indicates LEDC can actively send a reset operation to ensure the external LED lamp in the right state.
- Step 4 The software reads the status of reset_led_en, when the status value is 1, it indicates LEDC does not perform the transmission of LED reset operation; when the status value is 0, the LEDC completes the transmission of LED reset operation.
- **Step 5** When LEDC reset operation finishes, the LEDC data and register configuration need to be re-operated to start re-transmission data operation.

Figure 9-101 LEDC Timeout Abnormal Processing Flow


FIFO Overflow Abnormal Status

- Step 1 When FIFO_OVERFLOW_INT appears, it indicates the data configured by software exceeds the LEDC FIFO space, at this time the redundant data will be lost.
- **Step 2** The software needs to read data in <u>LEDC_FIFO_DATA_X</u> to confirm the lost data.

- **Step 3** The software re-configures the lost data to the LEDC.
- Step 4 If the software uses the soft_reset operation, the operation is the same with the timeout abnormal processing flow.

9.11.5 Register List

Module Name	Base Address
LEDC	0x02008000

Register Name	Offset	Description
LEDC_CTRL_REG	0x0000	LEDC Control Register
LED_T01_TIMING_CTRL_REG	0x0004	LEDC T0 & T1 Timing Control Register
LEDC_DATA_FINISH_CNT_REG	0x0008	LEDC Data Finish Counter Register
LED_RESET_TIMING_CTRL_REG	0x000C	LEDC Reset Timing Control Register
LEDC_WAIT_TIME0_CTRL_REG	0x0010	LEDC Wait Time0 Control Register
LEDC_DATA_REG	0x0014	LEDC Data Register
LEDC_DMA_CTRL_REG	0x0018	LEDC DMA Control Register
LEDC_INT_CTRL_REG	0x001C	LEDC Interrupt Control Register
LEDC_INT_STS_REG	0x0020	LEDC Interrupt Status Register
LEDC_WAIT_TIME1_CTRL_REG	0x0028	LEDC Wait Time1 Control Register
LEDC_FIFO_DATA_REG	0x0030+0x04*N	LEDC FIFO Data Register

LV.

9.11.6 Register Description

9.11.6.1 0x0000 LEDC Control Register (Default Value: 0x0000_003C)

Offset: 0x0000			Register Name: LEDC_CTRL_REG		
Bit	Read/Write	Default/Hex	Description		
31:29	1	1	/		
			TOTAL_DATA_LENGTH		
			Total length of transfer data (range: 0 to 8K, unit: 32-bit, only low 24-bit is valid)		
28:16	28:16 R/W	0x0	The field is recommended to be set to an integer multiple of (LED_NUM+1).		
			If TOTAL_DATA_LENGTH is greater than (LED_NUM+1), but non-		
			integer multiple, the last frame of data will transfer data less		
			than (LED_NUM+1).		
15:11	/	1	/		
10			RESET_LED_EN		
10	R/W 0x0		Write operation:		

Offset: 0	x0000		Register Name: LEDC	_CTRL_REG	
Bit	Read/Write	Default/Hex	Description		
			transfer a reset to LE Only when LEDC is in After the reset finish the IDLE status. To re to be used with SOFT When the software s to check if the reset Read operation: 0: LEDC completes th	D. IDLE status, the model of the control status is the control staturn LEDC to the I T_RESET. Sets the bit, the so is complete. The transmission of the solution of the s	e CPU triggers LEDC to reset can be performed. tate machine returns to IDLE status, it also needs oftware can read the bit the LED reset operation mission of the LED reset
9	/	/	/		
			e LEDC internal cor	ata to LEDC according to mbines data to output to	
8:6	R/W	0x0	Software Input Mode	Configuration	LEDC Output Mode
				000	GRB
				001	GBR
				010	RGB
			GRB	011	RBG
				100	BGR
				101	BRG
				000	GBR
				001	GRB
			GBR	010	BGR
				011	BRG

Offset: 0x0000		Register Name: LEDC_CTRL_REG			
Bit	Read/Write	Default/Hex	Description		
				100 101	RGB RBG
				000	RGB
				001	RBG
				010	GRB
			RGB	011	GBR
				100	BRG
				101	BGR
				000	RBG
				001	RGB
			RBG	010	BRG
				011	BGR
				100	GRB
				101	GBR
				000	BGR
				001	BRG
			BGR	010	GBR
			/	011	GRB
				100	RBG
			/	101	RGB
			BRG	000	BRG
				001	BGR
				010	RBG RGB
				100	GBR
				100	GRB
			LED_MSB_TOP	101	GKB
5	5 R/W	V 0x1	Adjust sequence of the combined GRB data		
-	,		0: LSB		
			1: MSB		
4	R/W	0x1	LED_MSB_G MSB control for Gree	an data	
4	Γ/ VV	UXI	0: LSB	en udld	

Offset: 0	Offset: 0x0000		Register Name: LEDC_CTRL_REG
Bit	Read/Write Default/Hex		Description
			1: MSB
			LED_MSB_R
2	D /M	0.4	MSB control for Red data
3	R/W	0x1	0: LSB
			1: MSB
			LED_MSB_B
2	DAA	01	MSB control for Blue data
2	R/W	0x1	0: LSB
			1: MSB
			LEDC_SOFT_RESET
			LEDC soft reset
			Write 1 to clear it automatically.
			The ranges of LEDC soft reset include the following points: all
			internal status registers, the control state machine returns to in
			idle status, the LEDC FIFO read & write point is cleared to 0, the
			LEDC interrupt is cleared; and the affected registers are
			followed.
			1.LEDC_CTRL_REG (LEDC_EN is cleared to 0);
1	R/W1C	0x0	PLL_T0&1_TIMING_CTRL_REG remains unchanged;
			3. LEDC_DATA_FINISH_CNT_REG (LEDC_DATA_FINISH_CNT is
			cleared to 0);
			<pre>4.LED_RESET_TIMING_CTRL_REG remains unchanged;</pre>
			LEDC_WAIT_TIME_CTRL_REG remains unchanged;
			LEDC_DMA_CTRL_REG remains unchanged;
			LEDC_INTERRUPT_CTRL_REG remains unchanged;
			8.LEDC_INT_STS _REG is cleared to 0;
			LEDC_CLK_GATING_REG remains unchanged;
			10.LEDC_FIFO_DATA_REG remains unchanged;
			LEDC_EN
			LEDC Enable
			0: Disable
0	R/W	0x0	1: Enable
			That the bit is enabled indicates LEDC can be started when LEDC
			data finished transmission or LEDC_EN is cleared to 0 by
			hardware in LEDC_SOFT_RESET situation.

9.11.6.2 0x0004 LEDC T0 & T1 Timing Control Register (Default Value: 0x0286_01D3)

Offset: 0x0004			Register Name: LED_T01_TIMING_CTRL_REG
Bit	Read/Write	Default/Hex	Description
31:27	/	/	1
			T1H_TIME
			LED T1H time
26:21	R/W	0x14	Unit: cycle (24 MHz), T1H_TIME =42 ns*(N+1)
			The default value is 882 ns, the range is 80 ns–2560 ns.
			N: 1–3F. When is 0, T1H_TIME = 3F
			T1L_TIME
			LED T1L time
20:16	R/W	0x6	Unit: cycle (24 MHz), T1L_TIME =42 ns*(N+1)
			The default value is 294 ns, the range is 80 ns–1280 ns.
			N: 1–1F. When is 0, T1L_TIME = 1F
15:11	/	/	1
			TOH_TIME
			LED TOh time
10:6	R/W	0x7	Unit: cycle (24 MHz), T0H_TIME =42 ns*(N+1)
			The default value is 336 ns, the range is 80 ns-1280 ns.
			N: 1–1F. When is 0, TOH_TIME = 1F
			TOL_TIME
			LED TOI time
5:0	R/W	0x13	Unit: cycle (24 MHz), TOL_TIME =42 ns*(N+1)
			The default value is 840 ns, the range is 80 ns-2560 ns.
			N: 1–3F. When is 0, TOL_TIME = 3F

9.11.6.3 0x0008 LEDC Data Finish Counter Register (Default Value: 0x1D4C_0000)

Offset: 0x0008			Register Name: LEDC_DATA_FINISH_CNT_REG
Bit	Bit Read/Write Default/Hex		Description
31:30	1	/	/

Offset: 0	Offset: 0x0008		Register Name: LEDC_DATA_FINISH_CNT_REG
Bit	Read/Write	Default/Hex	Description
29:16	R/W	0x1D4C	LED_WAIT_DATA_TIME The value is the time that internal FIFO in LEDC is waiting for data. When the time is exceeded, the LEDC will send the wait_data_timeout_int interrupt. (This is an abnormal situation, software needs to reset LEDC.) The value is about 300 us by default. The adjust range is 80 ns-655 us. led_wait_data_time=42ns*(N+1). N: 1-1FFF. When the field is 0, LEDC_WAIT_DATA_TIME=1FFF
15:13	/	/	/
12:0	R	0x0	LED_DATA_FINISH_CNT The value is the total LED data that have been sent. (Range: 0– 8k)
)x000C LE	DC Reset Timi	ng Control Regis	ster (Default Value: 0x1D4C_0000)

9.11.6.4 0x000C LEDC Reset Timing Control Register (Default Value: 0x1D4C_0000)

Offset: 0x000C			Register Name: LED_RESET_TIMING_CTRL_REG
Bit	Read/Write	Default/Hex	Description
31:29	/	/	
			TR_TIME
			Reset time control of LED lamp
28:16	D /\A/	0x1D4C	Unit: cycle (24 MHz), tr_time=42 ns*(N+1)
28.10	R/W		The default value is 300 us.
			The adjust range is 80 ns–327 us.
			N: 1–1FFF
15:10	7	1	/
		0x0	LED_NUM
			The value is the number of external LED lamp. Maximum up to
9:0	R/W		1024.
			The default value 0 indicates that 1 LED lamp is external
			connected. The range is from 0 to 1023.

9.11.6.5 0x0010 LEDC Wait Time 0 Control Register (Default Value: 0x0000_00FF)

Offset: 0x0010		Register Name: LEDC_WAIT_TIME0_CTRL_REG
Read/Write	Default/Hex	Description
/	/	/
		WAIT_TIM0_EN
		WAIT_TIME0 enable
R/\//	0v0	When it is 1, the controller automatically inserts waiting time
		between LED package data.
		0: Disable
		1: Enable
		TOTAL_WAIT_TIME0
		Waiting time between 2 LED data. The LEDC output is low level.
	OxFF	The adjust range is 80 ns-10 us.
R/W		wait_time0=42 ns*(N+1)
		Unit: cycle(24 MHz)
		N: 1–FF
		Read/Write Default/Hex / / R/W 0x0

9.11.6.6 0x0014 LEDC Data Register (Default Value: 0x0000_0000)

Offset: 0x0014			Register Name: LEDC_DATA_REG
Bit	Read/Write	Default/Hex	Description
31:0	w	0x0	LEDC DATA LED display data (the lower 24-bit is valid)

9.11.6.7 0x0018 LEDC DMA Control Register (Default Value: 0x0000_002F)

Offset: 0	Offset: 0x0018		Register Name: LEDC_DMA_CTRL_REG
Bit	Read/Write	Default/Hex	Description
31:6	/	/	/
	R/W	0x1	LEDC_DMA_EN
5			LEDC DMA request enable
5			0: Disable request of DMA transfer data
			1: Enable request of DMA transfer data

Offset: 0x0018			Register Name: LEDC_DMA_CTRL_REG
Bit	Read/Write	Default/Hex	Description
			LEDC_FIFO_TRIG_LEVEL
			The remaining space of internal FIFO in LEDC
			The internal FIFO in LEDC is 24*32.
			When the remaining space of internal FIFO in LEDC is more than
4:0	R/W	0x0F	or equal to LEDFIFO_TRIG_LEVEL, the DMA or the CPU request
			will generate. The default value is 15.
			The adjusted value is from 1 to 31. The recommended
			configuration is 7 or 15. When the configuration value is 0,
			LEDFIFO_TRIG_LEVEL=F.

9.11.6.8 0x001C LEDC Interrupt Control Register (Default Value: 0x0000_0000)

0x001C L	x001C LEDC Interrupt Control Register (Default Value: 0x0000_0000)			
Offset: 0x001C			Register Name: LEDC_INTERRUPT_CTRL_REG	
Bit	Read/Write	Default/Hex	Description	
31:6	1	1		
			GLOBAL_INT_EN Global interrupt enable	
5	R/W	0x0	0: Disable 1: Enable	
4	R/W	0x0	FIFO_OVERFLOW_INT_EN FIFO overflow interrupt enable When the data written by the software is more than the internal FIFO level of LEDC, the LEDC is in the data loss state.	
			0: Disable 1: Enable	
3	R/W	0x0	WAITDATA_TIMEOUT_INT_EN The internal FIFO in LEDC cannot get data because of some abnormal situation, after the time of led_wait_data_time, the interrupt will be enabled. 0: Disable 1: Enable	
2	/	/	1	
1	R/W	0x0	FIFO_CPUREQ_INT_EN FIFO request CPU data interrupt enable 0: Disable	
			1: Enable	

Offset: 0x001C			Register Name: LEDC_INTERRUPT_CTRL_REG
Bit	Read/Write	Default/Hex	Description
	R/W	0x0	LED_TRANS_FINISH_INT_EN
			Data transmission complete interrupt enable
0			0: Disable
			1: Enable

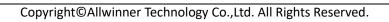
9.11.6.9 0x0020 LEDC Interrupt Status Register (Default Value: 0x0002_0000)

Offset: 0	x0020		Register Name: LEDC_INT_STS_REG
Bit	Read/Write	Default/Hex	Description
31:18	/	/	/
17	R	0x1	FIFO_EMPTY FIFO empty status flag
16	R	0x0	FIFO_FULL FIFO full status flag
15:10	R	0x0	FIFO_WLW FIFO internal valid data depth It indicates the space FIFO has been occupied.
9:5	1	/	
4	R/W1C	0x0	 FIFO_OVERFLOW_INT FIFO overflow interrupt The data written by external is more than the maximum storage space of LED FIFO, the LEDC will be in the data loss state. At this time, the software needs to deal with the abnormal situation. The processing mode is as follows. (1) The software can query LED_FIFO_DATA_REG to determine which data has been stored in the internal FIFO of LEDC. (2) The LEDC performs soft_reset operation to refresh all data. 0: FIFO not overflow 1: FIFO overflow

	Register Name: LEDC_INT_STS_REG
Default/Hex	Description
0x0	WAITDATA_TIMEOUT_INT When internal FIFO of LEDC cannot get data because of some abnormal situation, after led_wait_data_time, the timeout interrupt is set, the LEDC is in WAIT_DATA state, the LEDC outputs a level state configured by LED_POLARITY; in the course of wait_data, if the new data arrives, the LEDC will continue to send data, at this time software needs to notice whether the waiting time of LEDC exceeds the operation time of reset. If the waiting time of LEDC exceeds the operation time of reset (this is equivalent to reset operation sent by LEDC), the LED may enter in refresh state, the data has not been sent. 0: LEDC not timeout 1: LEDC timeout
/	1
0x0	FIFO_CPUREQ_INT FIFO request CPU data interrupt When FIFO data is less than the threshold, the interrupt will be reported to the CPU. 0: FIFO does not request that CPU transfers data 1: FIFO requests that CPU transfers data
0x0	LED_TRANS_FINISH_INT Data transfer complete interrupt The value indicates that the data configured as total_data_length is transferred completely. 0: Data is not transferred completely 1: Data is transferred completely
	0x0 /

9.11.6.10 0x0028 LEDC Wait Time 1 Control Register (Default Value: 0x01FF_FFFF)

Offset: 0x0028			Register Name: LEDC_WAIT_TIME1_CTRL_REG
Bit	Bit Read/Write Default/Hex		Description
		0x0	WAIT_TIM1_EN
31	R/W		0: Disable
			1: Enable
			WAIT_TIME1 enable
			When the bit is 1, the controller automatically inserts the waiting time between the LED frame data.



Offset: 0x0028			Register Name: LEDC_WAIT_TIME1_CTRL_REG
Bit	Read/Write Default/Hex		Description
	R/W	0x01FFFFFF	TOTAL_WAIT_TIME1
			Waiting time between 2 frame data.
			The LEDC output is low level.
30:0			The adjust range is 80 ns- 85 s. wait_time1=42 ns*(N+1)
			Unit: cycle (24 MHz)
			N: 0x80–0x7FFFFFFF
			If the value is 0, TOTAL_WAIT_TIME1=0x7FFFFFFF

9.11.6.11 0x0030+N*0x04 LEDC FIFO Data Register X (Default Value: 0x0000_0000)

Offset: 0x0030+N*0x04 (N=0-31)		4 (N=0–31)	Register Name: LEDC_FIFO_DATA_X
Bit	Read/Write	Default/Hex	Description
			LEDC_FIFO_DATA_X
31:0	R	0x0	Internal FIFO data of LEDC
			The lower 24-bit is valid.

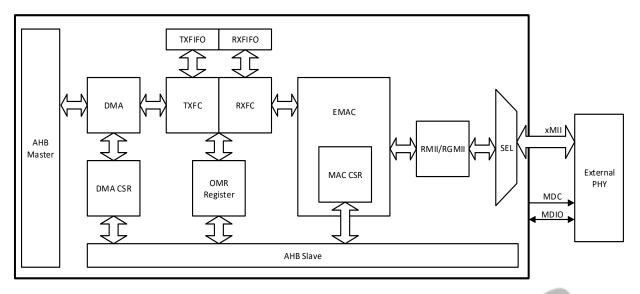
LLV

9.12 EMAC

9.12.1 Overview

The Ethernet Medium Access Controller (EMAC) enables a host to transmit and receive data over Ethernet in compliance with the IEEE 802.3-2002 standard. It supports 10/100/1000 Mbit/s external PHY with RMII/RGMII interface in full-duplex and half-duplex modes. The internal DMA is designed for packet-oriented data transfers based on a linked list of descriptors.

The EMAC has the following features:


- One 10/100/1000 Mbit/s Ethernet port with reduced gigabit media independent interface (RGMII) and reduced media independent interface (RMII) interfaces, for connecting the external EPHY
- Compliant with IEEE 802.3-2002 standard
- Provides the management data input/output (MDIO) interface for PHY device configuration and management with configurable clock frequencies
- Supports both full-duplex and half-duplex operations
- Programmable frame length to support Standard or Jumbo Ethernet frames with sizes up to 16 KB
- Supports a variety of flexible address filtering modes
- Separate 32-bit status returned for transmission and reception packets
- Optimization for packet-oriented DMA transfers with frame delimiters
 - Supports linked-list descriptor list structure
 - Descriptor architecture, allowing large blocks of data transfer with minimum CPU intervention; each descriptor can transfer up to 4 KB of data
 - Comprehensive status reporting for normal operation and transfers with errors
- 4 KB TXFIFO for transmission packets and 16 KB RXFIFO for reception packets
- Programmable interrupt options for different operational conditions

9.12.2 Block Diagram

The following figure shows the block diagram of EMAC.

Figure 9-103 EMAC Block Diagram

9.12.3 Functional Description

9.12.3.1 External Signals

Functional Description External Signals The following table describes the pin mapping of EMAC. Table 9-35 EMAC Pin Mapping			
Pin Name	RGMII	RMII	
RGMII-RXD3	RXD3	/	
RGMII-RXD2	RXD2	/	
RGMII-RXD1/RMII-RXD1	RXD1	RXD1	
RGMII-RXD0/RMII-RXD0	RXDO	RXDO	
RGMII-RXCK	RXCK	/	
RGMII-RXCTRL/RMII-CRS-DV	RXCTL	CRS-DV	
RGMII-TXD3	TXD3	/	
RGMII-TXD2	TXD2	/	
RGMII-TXD1/RMII-TXD1	TXD1	TXD1	
RGMII-TXD0/RMII-TXD0	TXD0	TXD0	
RGMII-TXCK/RMII-TXCK	ТХСК	ТХСК	
RGMII-TXCTRL/RMII-TXEN	TXCTL	TXEN	
RGMII-CLKIN/RMII-RXER	CLKIN	RXER	
MDC	MDC	MDC	
MDIO	MDIO	MDIO	

Pin Name	RGMII	RMII
EPHY-25M	EPHY-25M	EPHY-25M

The following table describes the pin list of RGMII.

Table 9-36 EMAC RGMII Pin List

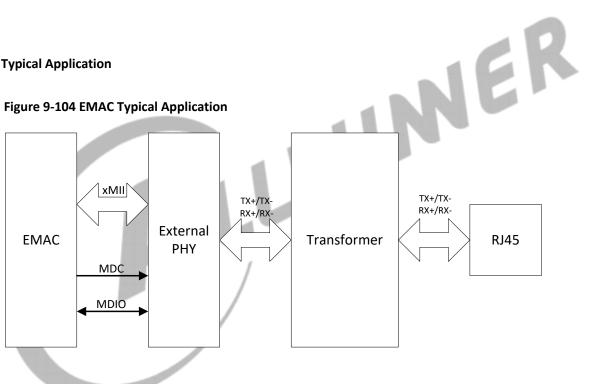
Pin Name	Description	Туре
RGMII-TXD[3:0]	EMAC RGMII transmit data	0
RGMII-TXCTRL	EMAC RGMII transmit control	0
RGMII-TXCK	EMAC RGMII transmit clock	0
RGMII-RXD[3:0]	EMAC RGMII receive data	I
RGMII-RXCTRL	EMAC RGMII receive control	
RGMII-RXCK	EMAC RGMII receive clock	
RGMII-CKIN	EMAC RGMII 125M reference clock input	
MDC	EMAC management data clock	0
MDIO	EMAC management data input output	I/O
EPHY-25M	25 MHz output for EMAC PHY	0

The following table describes the pin list of RMII.

Table 9-37 EMAC RMII Pin List

Pin Name	Description	Туре
RMII-TXD[1:0]	EMAC RMII transmit data	0
RMII-TXEN	EMAC RMII transmit enable	0
RMII-TXCK	EMAC RMII transmit clock	I
RMII-RXD[1:0]	EMAC RMII receive data	I
RMII-CRS-DV	EMAC RMII receive data valid	1
RMII-RXER	EMAC RMII receive error	I
MDC	EMAC management data clock	0
MDIO	EMAC management data input output	I/O
EPHY-25M	25 MHz output for EMAC PHY	0

1

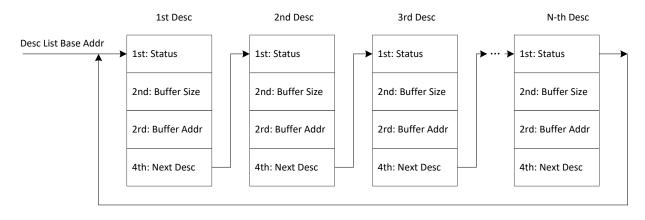

9.12.3.2 Clock Characteristics

The following table describes the clock of EMAC.

Table 9-38 EMAC Clock Characteristics

Clock Name	Description	Туре
RGMII0-TXCK/RMII0-TXCK	In RGMII mode, output 2.5 MHz/25 MHz/125 MHz. In RMII mode, input 5 MHz/50 MHz.	0/I
RGMII0-RXCK	In RGMII mode, input 2.5 MHz/25 MHz/125 MHz. In RMII mode, no input.	I
RGMII0-CLKIN	In RGMII mode, input 125M Reference Clock. In RMII mode, no clock.	I

9.12.3.3 Typical Application



9.12.3.4 EMAC RX/TX Descriptor

The internal DMA of EMAC transfers data between host memory and internal RX/TX FIFO by a linked list of descriptors. Each descriptor consists of four words and contains some necessary information to transfer TX and RX frames. The following figure shows the descriptor list structure. The address of each descriptor must be 32bit aligned.

Figure 9-105 EMAC RX/TX Descriptor List

9.12.3.5 TX Descriptor

1st Word of TX Descriptor

IX Descri	
1st Word	of TX Descriptor
Bits	Description
31	TX_DESC_CTL When set, the current descriptor can be used by DMA. This bit is cleared by DMA when the whole frame is transmitted or all data in the buffer of the current descriptor are transmitted.
30:17	Reserved
16	TX_HEADER_ERR When set, the checksum of the header for the transmitted frame is wrong.
15	Reserved
14	TX_LENGHT_ERR When set, the length of the transmitted frame is wrong.
13	Reserved
12	TX_PAYLOAD_ERR When set, the checksum of the payload for the transmitted frame is wrong.
11	Reserved
10	TX_CRS_ERR When set, the carrier is lost during transmission.
9	TX_COL_ERR_0 When set, the frame is aborted because of a collision after the contention period.
8	TX_COL_ERR_1 When set, the frame is aborted because of too many collisions.
7	Reserved

Bits	Description					
6:3	TX_COL_CNT					
0.3	The number of collisions before transmission.					
2	TX_DEFER_ERR					
2	When set, the frame is aborted because of too much deferral.					
1	TX_UNDERFLOW_ERR					
	When set, the frame is aborted because of the TX FIFO underflow error.					
0	TX_DEFER					
0	When set in Half-Duplex mode, the EMAC defers the frame transmission.					

2nd Word of TX Descriptor

Bits	Description					
21	TX_INT_CTL					
31	When it is set and the current frame has been transmitted, the TX_INT in Interrupt Status Register will be set.					
30	LAST_DESC					
50	When it is set, the current descriptor is the last one of the current frame.					
29	FIR_DESC					
29	When it is set, the current descriptor is the first one of the current frame.					
28:27	CHECKSUM_CTL					
20.27	These bits control to insert checksum in the transmit frame.					
26	CRC_CTL					
20	When it is set, the CRC field is not transmitted.					
25:11	Reserved					
10:0	BUF_SIZE					
10.0	The size of the buffer specified by the current descriptor.					

3rd Word of TX Descriptor

Bits	Description			
31:0	BUF_ADDR			
	The address of the buffer specified by the current descriptor.			

4th Word of TX Descriptor

Bits	Description			
31:0	NEXT_DESC_ADDR			
	The address of the next descriptor. It must be 32-bit aligned.			

9.12.3.6 RX Descriptor

1st Word of RX Descriptor

Bits	Description					
	RX_DESC_CTL					
31	When it is set, the current descriptor can be used by DMA. This bit is cleared by DMA when the					
	complete frame is received or the buffer of the current descriptor is full.					
30	RX_DAF_FAIL					
50	When it is set, the current frame does not pass the DA filter.					
	RX_FRM_LEN					
	When LAST_DESC is not set and no error bit is set, this field is the length of received data for					
29:16	the current frame.					
	When LAST_DESC is set, RX_OVERFLOW_ERR and RX_NO_ENOUGH_BUF_ERR are not set, this					
	field is the length of the received frame.					
15	Reserved					
14	RX_NO_ENOUGH_BUF_ERR					
	When it is set, the current frame is clipped because of no enough buffer.					
13	RX_SAF_FAIL					
15	When it is set, the current fame does not pass the SA filter.					
12	Reserved					
11	RX_OVERFLOW_ERR					
11	When it is set, a buffer overflow error occurred and the current frame is wrong.					
10	Reserved					
	FIR_DESC					
9	When it is set, the current descriptor is the first descriptor of the current frame.					
8	LAST_DESC					
0	When it is set, the current descriptor is the last descriptor of the current frame.					
7	RX_HEADER_ERR					
7	When it is set, the checksum of the frame header is wrong.					

Bits	Description					
6	RX_COL_ERR					
0	When it is set, there is a late collision during the reception in half-duplex mode.					
5	Reserved					
4	RX_LENGTH_ERR					
4	When it is set, the length of the current frame is wrong.					
3	RX_PHY_ERR					
5	When it is set, the receive error signal from PHY is asserted during the reception.					
2	Reserved					
1	RX_CRC_ERR					
1	When it is set, the CRC field of the received frame is wrong.					
0	RX_PAYLOAD_ERR					
0	When it is set, the checksum or length of the payload for the received frame is wrong.					

2nd Word of RX Descriptor

0	When it is set, the checksum or length of the payload for the received frame is wrong.					
2nd Word	d of RX Descriptor					
Bits	Description					
31	RX_INT_CTL When it is set and a frame has been received, the RX_INT will not be set.					
30:11	Reserved					
10:0	BUF_SIZE The size of the buffer is specified by the current descriptor.					

3rd Word of RX Descriptor

Bits	Description
31:0	BUF_ADDR
	The address of the buffer specified by the current descriptor.

4th Word of RX Descriptor

Bits	Description			
31:0	NEXT_DESC_ADDR			
	The address of the next descriptor. This field must be 32-bit aligned.			

9.12.4 Programming Guidelines

9.12.4.1 EMAC System Configuration

Perform the following steps:

- **Step 1** Write 0 to **EMAC BGR REG**[bit16] to assert the module reset.
- Step 2 Write 1 to EMAC BGR REG[bit16] to deassert the module reset.
- **Step 3** Write 1 to **EMAC BGR REG**[bit0] to enable the bus clock of the module.
- **Step 4** Configure the pin interfaces of EMAC by setting GPIO module.
- Step 5 Configure EMAC EPHY_CLK_REGO to set the transmission clock source of RGMI/RMII.

For RGMII RXCLK/CLK125M:

In RGMII mode, in addition to the configuration of the transmission clock source, it is generally necessary to adjust the timing by configuring the transmission clock delay, reception clock delay, transmission clock reverse, reception clock reverse.

- Write 0 to the bit[13] and write 1 to the bit[2] to select the RGMII interface.
- If selecting RXCLK as the clock source of RGMII, write 2 to the bit[1:0]; if selecting CLK125M as the clock source of RGMII, write 1 to the bit[1:0].
- Write 0 to the bit[3], write 0 to the bit[4], write 31 to the bit[9:5], and write 7 to the bit[12:10] to transmit the reception sequence adjustment.

For RMII TXCLK:

- Write 1 to the bit[13] and write 0 to the bit[2] to select the RMII interface.
- Write 0 to the bit[0] to select TXCLK as the clock source of RMII.

The configuration value of **EMAC EPHY_CLK_REGO** can refer to the following table.

Table 9-39 EMAC_EPHY_CLK_REG0 Configuration Value

EMAC_EPHY	PHY_SEL	RMII_EN	ETXDC	ERXDC	ERXIE	ETXIE	RMII/	ETCS
_CLK_REG0							RGMII	
	Bit15	Bit13	Bit[12:10]	Bit[9:5]	Bit4	Bit3	Bit2	Bit[1:0]
RGMII	0	0	7	31	0	0	1	1/2
RMII	0	1	0	0	0	0	0	0

9.12.4.2 EMAC Initialization

Step 1 Write 1 to **EMAC_BASIC_CTL1**[bit0] to perform the software reset.

- Step 2 Write 1 to EMAC BASIC CTL1[bit1] to set the DMA priority of TX/RX.
- Step 3 Configure EMAC_TX_CTL1 and EMAC_RX_CTL1 to set the configuration of DMA TX and DMA RX.
- **Step 4** Configure **EMAC INT EN** to set the corresponding interrupts and shield the needless interrupts.
- Step 5 Configure EMAC TX DMA LIST and EMAC RX DMA LIST to set the first address of the TX descriptor and the RX descriptor, respectively.
- Step 6 Configure EMAC_TX_CTLO and EMAC_RX_CTLO to set the TX and RX parameters. Configure EMAC BASIC CTLO to set the speed, duplex mode, loopback configuration. (If enabled the autonegotiation, the configuration is performed as a result of the negotiation)
- **Step 7** Configure **EMAC_RX_FRM_FLT** to set the RX frame filter.
- **Step 8** Configure **EMAC_TX_FLOW_CTL** and **EMAC_RX_CTL0** to set the control mechanism of TX and RX.
- **Step 9** Clear all interrupt flags.
- Step 10 Write 1 to EMAC TX CTL0[bit31] and write 1 to EMAC RX CTL0[bit31] to enable the TX and RX IN E functions.

9.12.5 Register List

Module Name	Base Address
EMAC	0x04500000

Register Name	Offset	Description
EMAC_BASIC_CTL0	0x0000	EMAC Basic Control Register0
EMAC_BASIC_CTL1	0x0004	EMAC Basic Control Register1
EMAC_INT_STA	0x0008	EMAC Interrupt Status Register
EMAC_INT_EN	0x000C	EMAC Interrupt Enable Register
EMAC_TX_CTL0	0x0010	EMAC Transmit Control Register0
EMAC_TX_CTL1	0x0014	EMAC Transmit Control Register1
EMAC_TX_FLOW_CTL	0x001C	EMAC Transmit Flow Control Register
EMAC_TX_DMA_DESC_LIST	0x0020	EMAC Transmit Descriptor List Address Register
EMAC_RX_CTL0	0x0024	EMAC Receive Control Register0
EMAC_RX_CTL1	0x0028	EMAC Receive Control Register1
EMAC_RX_DMA_DESC_LIST	0x0034	EMAC Receive Descriptor List Address Register
EMAC_RX_FRM_FLT	0x0038	EMAC Receive Frame Filter Register
EMAC_RX_HASH0	0x0040	EMAC Hash Table Register0

Register Name	Offset	Description
EMAC_RX_HASH1	0x0044	EMAC Hash Table Register1
EMAC_MII_CMD	0x0048	EMAC Management Interface Command Register
EMAC_MII_DATA	0x004C	EMAC Management Interface Data Register
EMAC_ADDR_HIGH0	0x0050	EMAC MAC Address High Register0
EMAC_ADDR_LOW0	0x0054	EMAC MAC Address Low Register0
EMAC_ADDR_HIGHN	0x0050+0x08*N (N=1-7)	EMAC MAC Address High Register N (N=1–7)
EMAC_ADDR_LOWN	0x0054+0x08*N (N=1-7)	EMAC MAC Address Low Register N (N=1–7)
EMAC_TX_DMA_STA	0x00B0	EMAC Transmit DMA Status Register
EMAC_TX_CUR_DESC	0x00B4	EMAC Current Transmit Descriptor Register
EMAC_TX_CUR_BUF	0x00B8	EMAC Current Transmit Buffer Address Register
EMAC_RX_DMA_STA	0x00C0	EMAC Receive DMA Status Register
EMAC_RX_CUR_DESC	0x00C4	EMAC Current Receive Descriptor Register
EMAC_RX_CUR_BUF	0x00C8	EMAC Current Receive Buffer Address Register
EMAC_RGMII_STA	0x00D0	EMAC RGMII Status Register

9.12.6 Register Description

9.12.6.1 0x0000 EMAC Basic Control Register0 (Default Value: 0x0000_0000)

Offset	:: 0x0000		Register Name: EMAC_BASIC_CTL0
Bit	Read/Write	Default/Hex	Description
31:4	1	1	/
			SPEED
			EMAC Working Speed
3:2	R/W	0x0	00: 1000 Mbit/s
5.2	r/ vv		01: Reserved
			10: 10 Mbit/s
			11: 100 Mbit/s
			LOOPBACK
1	R/W	0x0	EMAC Loopback Mode For Test
1	ry vv		0: Disable
			1: Enable

LV

Offset	Offset: 0x0000		Register Name: EMAC_BASIC_CTL0
Bit	Read/Write	Default/Hex	Description
		0x0	DUPLEX
0	0 R/W		EMAC Transfer Mode
0			0: Half-duplex
			1: Full-duplex

9.12.6.2 0x0004 EMAC Basic Control Register1 (Default Value: 0x0800_0000)

Offset: 0x0004			Register Name: EMAC_BASIC_CTL1
Bit	Read/Write	Default/Hex	Description
31:30	/	/	/
29:24	R/W	0x8	BURST_LEN The burst length of RX and TX DMA transfer.
23:2	/	/	/
1	R/W	0x0	RX_TX_PRI RX TX DMA Priority 0: Same priority 1: RX priority is over TX
0	R/W	0x0	SOFT_RST Soft Reset all Registers and Logic O: No valid 1: Reset All clock inputs must be valid before soft reset. This bit is cleared internally when the reset operation is completed fully. Before writing any register, this bit should read a 0.

9.12.6.3 0x0008 EMAC Interrupt Status Register (Default Value: 0x4000_0000)

Offset:	Offset: 0x0008		Register Name: EMAC_INT_STA
Bit	Read/Write	Default/Hex	Description
31:17	R	0x2000	Reserved
			RGMII_LINK_STA_P
			RMII Link Status Changed Interrupt Pending
16	R/W1C	0x0	0: No Pending
			1: Pending
			Write '1' to clear it.

Offset:	0x0008		Register Name: EMAC_INT_STA
Bit	Read/Write	Default/Hex	Description
15:14	/	/	/
13	R/W1C	0x0	RX_EARLY_P RX DMA Filled First Data Buffer of the Receive Frame Interrupt Pending 0: No Pending 1: Pending Write '1' to clear it.
12	R/W1C	0x0	RX_OVERFLOW_P RX FIFO Overflow Error Interrupt Pending 0: No Pending 1: Pending Write '1' to clear it.
11	R/W1C	0x0	RX_TIMEOUT_P RX Timeout Interrupt Pending 0: No Pending 1: Pending Write '1' to clear it. When this bit is asserted, the length of the received frame is greater than 2048 bytes (10240 when JUMBO_FRM_EN is set)
10	R/W1C	0x0	RX_DMA_STOPPED_P When this bit asserted, the RX DMA FSM is stopped.
9	R/W1C	0x0	 RX_BUF_UA_P RX Buffer UA Interrupt Pending 0: No Pending 1: Pending Write '1' to clear it. When this bit is asserted, the RX DMA cannot acquire the next RX descriptor and RX DMA FSM is suspended. The ownership of the next RX descriptor should be changed to RX DMA. The RX DMA FSM will resume when the RX_DMA_START is written or the next receive frame is coming.
8	R/W1C	0x0	RX_P Frame RX Completed Interrupt Pending 0: No Pending 1: Pending Write '1' to clear it. When this bit is asserted, a frame reception is completed. The RX DMA FSM remains running.
7:6	/	/	/

Offset:	0x0008		Register Name: EMAC_INT_STA
Bit	Read/Write	Default/Hex	Description
5	R/W1C	0x0	 TX_EARLY_P Total interrupt pending which the frame is transmitted to FIFO 0: No Pending 1: Pending Write '1' to clear it.
4	R/W1C	0x0	TX_UNDERFLOW_P TX FIFO Underflow Interrupt Pending 0: No Pending 1: Pending Write '1' to clear it.
3	R/W1C	0x0	TX_TIMEOUT_P Transmitter Timeout Interrupt Pending 0: No Pending 1: Pending Write '1' to clear it.
2	R/W1C	0x0	 TX_BUF_UA_P TX Buffer UA Interrupt Pending 0: No Pending 1: Pending When this asserted, the TX DMA can not acquire the next TX descriptor and the TX DMA FSM is suspended. The ownership of the next TX descriptor should be changed to TX DMA. The TX DMA FSM will resume when writing to TX_DMA_START bit.
1	R/W1C	0x0	TX_DMA_STOPPED_P Transmission DMA Stopped Interrupt Pending 0: No Pending 1: Pending Write '1' to clear it.
0	R/W1C	0x0	TX_P Frame Transmission Interrupt Pending 0: No Pending 1: Pending Write '1' to clear it.

9.12.6.4 0x000C EMAC Interrupt Enable Register (Default Value: 0x0000_0000)

Offset:	Offset: 0x000C		Register Name: EMAC_INT_EN
Bit	Read/Write	Default/Hex	Description
31:14	/	/	/
13	R/W	0x0	RX_EARLY_INT_EN Early Receive Interrupt 0: Disable 1: Enable
12	R/W	0x0	RX_OVERFLOW_INT_EN Receive Overflow Interrupt 0: Disable 1: Enable
11	R/W	0x0	RX_TIMEOUT_INT_EN Receive Timeout Interrupt 0: Disable 1: Enable
10	R/W	0x0	RX_DMA_STOPPED_INT_EN Receive DMA FSM Stopped Interrupt 0: Disable 1: Enable
9	R/W	0x0	RX_BUF_UA_INT_EN Receive Buffer Unavailable Interrupt 0: Disable 1: Enable
8	R/W	0x0	RX_INT_EN Receive Interrupt 0: Disable 1: Enable
7:6	/	/	/
5	R/W	0x0	TX_EARLY_INT_EN Early Transmit Interrupt 0: Disable 1: Enable
4	R/W	0x0	TX_UNDERFLOW_INT_EN Transmit Underflow Interrupt 0: Disable 1: Enable

Offset	Offset: 0x000C		Register Name: EMAC_INT_EN
Bit	Read/Write	Default/Hex	Description
			TX_TIMEOUT_INT_EN
3	R/W	0x0	Transmit Timeout Interrupt
5		0.00	0: Disable
			1: Enable
			TX_BUF_UA_INT_EN
2		0.00	Transmit Buffer Available Interrupt
2	R/W	0x0	0: Disable
			1: Enable
			TX_DMA_STOPPED_INT_EN
1	R/W	0x0	Transmit DMA FSM Stopped Interrupt
T	r, v		0: Disable
			1: Enable
			TX_INT_EN
0	DAN	0x0	Transmit Interrupt
	R/W		0: Disable
			1: Enable
		•	

9.12.6.5 0x0010 EMAC Transmit Control Register0 (Default Value: 0x0000_0000)

Offse	Offset: 0x0010		Register Name: EMAC_TX_CTL0
Bit	Read/Write	Default/Hex	Description
			TX_EN
			Enable Transmitter
31	R/W	0x0	0: Disable
31		0x0	1: Enable
			When disabled, the transmission will continue until the current
			transmission finishes.
		0x0	TX_FRM_LEN_CTL
			Frame Transmit Length Control
30	R/W		0: Up to 2,048 bytes (JUMBO_FRM_EN==0)
50	r, vv		Up to 10,240 bytes (JUMBO_FRM_EN==1)
			1: Up to 16,384 bytes
			Any bytes after that is cut off.
29:0	/	/	/

9.12.6.6 0x0014 EMAC Transmit Control Register1 (Default Value: 0x0000_0000)

Offset:	Offset: 0x0014		Register Name: EMAC_TX_CTL1
Bit	Read/Write	Default/Hex	Description
			TX_DMA_START
			Transmit DMA FSM Start
31	R/W	0x0	0: No valid
			1: Start
			It is cleared internally and always read a 0.
			TX_DMA_EN
30	R/W	0x0	0: Stop TX DMA after the completion of current frame transmission
			1: Start and run TX DMA
29:11	/	1	/
			тх_тн
			Threshold value of TX DMA FIFO
			When TX_MD is 0, the transmission starts when the frame size in
			TX DMA FIFO is greater than the threshold. In addition, the full
			frames with a length less than the threshold are transferred
10:8	R/W	0x0	automatically.
			000: 64
			001: 128
			010: 192 011: 256
			Others: Reserved
7:2	/		. /
1.2	/	/	
			TX_MD Transmission Mode
1	R/W	0x0	0: TX starts after the TX DMA FIFO bytes is greater than the TX_TH
			1: TX starts after the TX DMA FIFO is located a full frame
			FLUSH_TX_FIFO
			Flush the data in the TX FIFO
0	R/WAC	0x0	0: Enable
			1: Disable
			ד. הוצמחוב

9.12.6.7 0x001C EMAC Transmit Flow Control Register (Default Value: 0x0000_0000)

Offset:	Offset: 0x001C		Register Name: EMAC_TX_FLOW_CTL
Bit	Read/Write	Default/Hex	Description
			TX_FLOW_CTL_STA
31	R/W	0x0	This bit indicates a pause frame transmission is in progress. When the configuration of flow control is ready, set this bit to transmit a pause frame in full-duplex mode or activate the backpressure function. After the transmission is completed, this bit will be cleared automatically. Before writing TX_FLOW_CTRL register, this bit must be read as 0.
30:22	/	/	/
21:20	R/W	0x0	TX_PAUSE_FRM_SLOT The threshold of the pause timer at which the input flow control signal is checked for automatic re-transmission of the pause frame. The threshold values should be always less than PAUSE_TIME.
19:4	R/W	0x0	PAUSE_TIME The pause time field in the transmitted control frame.
3:2	1		/
1	R/W	0x0	ZQP_FRM_EN 0: Disable 1: Enable When set, enable the functionality to generate the Zero-Quanta Pause control frame.
0	R/W	0x0	 TX_FLOW_CTL_EN TX Flow Control Enable 0: Disable 1: Enable When set, enable flow control operation to transmit pause frames in full-duplex mode, or enable the back-pressure operation in half-duplex mode.

9.12.6.8 0x0020 EMAC Transmit DMA Descriptor List Address Register (Default Value: 0x0000_0000)

Offset	Offset: 0x0020		Register Name: EMAC_TX_DMA_LIST
Bit	Read/Write	Default/Hex	Description
			TX_DESC_LIST
31:0	R/W	0x0	The base address of the transmission descriptor list
			It must be 32-bit aligned.

9.12.6.9 0x0024 EMAC Receive Control Register0 (Default Value: 0x0000_0000)

Offset:	0x0024		Register Name: EMAC_RX_CTL0
Bit	Read/Write	Default/Hex	Description
			RX_EN
24	D /14/		Enable Receiver
31	R/W	UXU	0: Disable receiver after current reception
			1: Enable
			RX_FRM_LEN_CTL
			Frame Receive Length Control
	- 6		0: Up to 2048 bytes (JUMBO_FRM_EN==0)
30	R/W	0x0	Up to 10240 bytes (JUMBO_FRM_EN==1)
			1: Up to 16384 bytes
			Any bytes after that is cut off.
			JUMBO_FRM_EN
			Jumbo Frame Enable
29	R/W	0x0	0: Disable
			1: Enable Jumbo frames of 9018 bytes without reporting a giant
			STRIP FCS
28	R/W	0x0	 When set, strip the Pad/FCS field on received frames only when
		0x0 0x0 0x0 0x0 / 0x0	the length of field value is less than or equal to 1500 bytes.
			CHECK_CRC
			Check CRC Enable
27	R/W	0x0	0: Disable
			1: Calculate CRC and check the IPv4 Header Checksum
26:18	/	1	/
			RX_PAUSE_FRM_MD
			 – – – Only detect multicast pause frame specified in the 802.3x
			standard.
17	R/W	0x0	1: In addition to detect multicast pause frame specified in the
			802.3x standard, also detect unicast pause frame with the address
			specified in MAC Address 0 High Register and MAC address 0 Low
			Register.
			RX_FLOW_CTL_EN
16	R/W	0x0	When set, enable the functionality that decodes the received
			pause frame and disable its transmitter for a specified time by
45.0	1		pause frame.
15:0	/	/	/

Bit	Read/Write	Default/Hex	
		2010000	Description
			RX_DMA_START
31	R/W	0x0	When set, the RX DMA will work. It is cleared internally and always
			read a 0.
			RX_DMA_EN
30	R/W	0v0	Receive DMA Enable
50		0.00	0: Stop RX DMA after finishing the received current frame
		0x0 0x0 / 0x0 0x0 0x0	1: Start and run RX DMA
29:25	/	/	/
			RX_FIFO_FLOW_CTL
			Receive FIFO Flow Control Enable
24	R/W	0x0	0: Disable
			1: Enable, base on RX_FLOW_CTL_TH_DEACT and
			RX_FLOW_CTL_TH_ACT
			RX_FLOW_CTL_TH_DEACT
			Threshold for Deactivating Flow Control
			00: Full minus 1 KB
23:22	R/W	0x0	01: Full minus 2 KB
			10: Full minus 3 KB
			11: Full minus 4 KB
			Valid in both half-duplex mode and full-duplex mode.
			RX_FLOW_CTL_TH_ACT
			Threshold for Activating Flow Control
			00: Full minus 1 KB
21:20	R/W	0x0	01: Full minus 2 KB
			10: Full minus 3 KB
			11: Full minus 4 KB
			Valid in both half-duplex mode and full-duplex mode.
19:6	/	/	/

9.12.6.10 0x0028 EMAC Receive Control Register1 (Default Value: 0x0000_0000)

Offset	: 0x0028		Register Name: EMAC_RX_CTL1
Bit	Read/Write	Default/Hex	Description
			RX_TH
			Threshold for RX DMA FIFO Start
			00: 64
5:4	R/W	0×0	01: 32
5.4		0.0	10: 96
			11: 128
			Only valid when RX_MD == 0, the full frames with a length less than the threshold are transferred automatically.
			RX_ERR_FRM
3	R/W	0x0	0: RX DMA drops frames with error
		0x0	1: RX DMA forwards frames with error
2	R/W	0x0	RX_RUNT_FRM When the bit is set to 1, it indicates forward undersized frames with no error and length less than 64 bytes.
			RX_MD
			Receive Mode
1	R/W	0x0	0: RX starts to read after the RX DMA FIFO byte is greater than
			RX_TH
			1: RX starts to read after the RX DMA FIFO is located a full frame
			FLUSH_RX_FRM
0	R/W	0×0	Flush Receive Frames
0		0.0	0: Enable when the receive descriptors/buffers are unavailable
			1: Disable

9.12.6.11 0x0034 EMAC Receive DMA Descriptor List Address Register (Default Value: 0x0000_0000)

Offset: 0x0034			Register Name: EMAC_RX_DMA_LIST
Bit	Read/Write	Default/Hex	Description
			RX_DESC_LIST
31:0	R/W	0x0	The base address of the received descriptor list
			It must be 32-bit aligned.

9.12.6.12 0x0038 EMAC Receive Frame Filter Register (Default Value: 0x0000_0000)

Bit Read/Write Default/Hex Description 31 R/W 0x0 DIS_ADDR_FILTER Disable Address Filter 0: Enable 1: Disable 30:18 / / / 17 R/W 0x0 DIS_BROADCAST Disable Receive Broadcast Frames 0: Receive 1: Drop 10 Image: Comparison of the section of the se	
31 R/W 0x0 Disable Address Filter 0: Enable 0: Enable 1: Disable 1: Disable 30:18 / / 17 R/W 0x0 DIS_BROADCAST Disable Receive Broadcast Frames 0: Receive 1: Drop	
31 R/W 0x0 0: Enable 1: Disable 1: Disable 30:18 / / 17 R/W 0x0 DIS_BROADCAST Disable Receive Broadcast Frames 0: Receive 1: Drop	
30:18 / / 17 R/W 0x0 0: Enable 1: Disable 0: Enable 1: Disable 0: Enable 1: Disable 0: Enable 1: Disable Receive Broadcast Frames 0: Receive 1: Drop	
30:18 / / 17 R/W 0x0 DIS_BROADCAST Disable Receive Broadcast Frames 0: Receive 1: Drop	
17 R/W 0x0 DIS_BROADCAST 17 Image: Distance of the security o	
17 R/W 0x0 Disable Receive Broadcast Frames 0: Receive 1: Drop	
17 R/W 0x0 0: Receive 1: Drop 1: Drop	
0: Receive 1: Drop	
RX_ALL_MULTICAST	
Receive All Multicast Frames Filter	
16 R/W 0x0 0: Filter according to HASH_MULTICAST	
1: Receive all	
15:14 / / /	
CTL_FRM_FILTER	
Receive Control Frames Filter	
00: Drop all control frames	
13:12 R/W 0x0 01: Drop all control frames	
10: Receive all control frames	
11: Receive all control frames when passing the address	filter
11:10 / / /	
HASH_MULTICAST	
Filter Multicast Frames Set	
9 R/W 0x0 0: By comparing the DA field in DA MAC address registers	5
1: According to the hash table	
HASH_UNICAST	
Filter Unicast Frames Set	
8 R/W 0x0 0: By comparing the DA field in DA MAC address registers	5
1: According to the hash table	
7 / / /	

Offset	:: 0x0038		Register Name: EMAC_RX_FRM_FLT
Bit	Read/Write	Default/Hex	Description
			SA_FILTER_EN
			Receive SA Filter Enable
6	R/W	0x0	0: Receive frames and update the result of SA filter
			1: Update the result of the SA filter. In addition, if the SA field of
			the received frame does not match the values in SA MAC address
			registers, drop this frame.
			SA_INV_FILTER
			Receive SA Invert Filter Set
5	R/W	0x0	0: Pass frames whose SA field matches SA MAC address registers
			1: Pass frames whose SA field does not match SA MAC address
			registers
			DA_INV_FILTER
4	R/W	0x0	0: Normal filtering of frames is performed
-		0.0	1: Filter both unicast and multicast frames by comparing DA field
			in inverse filtering mode
3:2	1	1	
			FLT_MD
			0: If the HASH_MULTICAST or HASH_UNICAST is set, the frame is
1	R/W	0x0	passed only when it matches the Hash filter
			1: Receive the frame when it passes the address register filter or
			the hash filter (set by HASH_MULTICAST or HASH_UNICAST)
			RX_ALL
			Receive All Frame
0	R/W	0x0	0: Receive the frames that pass the SA/DA address filter
			1: Receive all frames and update the result of address filter (pass
			or fail) in the receive status word

9.12.6.13 0x0040 EMAC Receive Hash Table Register0 (Default Value: 0x0000_0000)

Offset	t: 0x0040		Register Name: EMAC_RX_HASH0
Bit	Read/Write	Default/Hex	Description
31:0	R/W	0v0	HASH_TABO
51.0		0x0	The upper 32 bits of Hash table for the received frame filter.

9.12.6.14 0x0044 EMAC Receive Hash Table Register1 (Default Value: 0x0000_0000)

Offset: 0x0044			Register Name: EMAC_RX_HASH1
Bit	Read/Write	Default/Hex	Description
31:0	R/W	0x0	HASH_TAB1
51.0	Γ.Υ ΥΥ	0.00	The lower 32 bits of Hash table for the received frame filter.

9.12.6.15 0x0048 EMAC MII Command Register (Default Value: 0x0000_0000)

Offset	0x0048		Register Name: EMAC_MII_CMD
Bit	Read/Write	Default/Hex	Description
31:23	/	/	/
			MDC_DIV_RATIO_M MDC Clock Divider Ratio The MDC Clock is divided from the AHB clock. 000: 16
22:20	R/W	0x0	001: 32 010: 64 011: 128 Others: Reserved
19:17	1	/	
16:12	R/W	0x0	PHY_ADDR PHY Address
11:9	1	1	1
8:4	R/W	0x0	PHY_REG_ADDR PHY Register Address
3:2	1	1	/
1	R/W	0x0	MII_WR MII Write and Read 0: Read 1: Write
0	R/WAC	0x0	MII_BUSY MII Status 0: Writing 0 is no valid, and reading 0 indicates the read/write operation is finished 1: Writing 1 starts the read/write operation, and reading 1 indicates busy.

9.12.6.16 0x004C EMAC MII Data Register (Default Value: 0x0000_0000)

Offset:	0x004C		Register Name: EMAC_MII_DATA
Bit	Read/Write	Default/Hex	Description
31:16	/	/	/
15:0	R/W	0x0	MII_DATA Write to or read from the register in the selected PHY.

9.12.6.17 0x0050 EMAC MAC Address High Register0 (Default Value: 0x0000_FFFF)

Offset:	0x0050		Register Name: EMAC_ADDR_HIGH0
Bit	Read/Write	Default/Hex	Description
31:16	/	/	/
15:0	R/W	OxFFFF	MAC_ADDR_HIGH0 The upper 16 bits of the 1st MAC address.

9.12.6.18 0x0054 EMAC MAC Address Low Register0 (Default Value: 0xFFFF_FFF)

Offset: 0x0054			Register Name: EMAC_ADDR_LOW0
Bit	Read/Write	Default/Hex	Description
31:0	R/W	OxFFFFFFF	MAC_ADDR_LOW0
51.0	r, vv	UXFFFFFFF	The lower 32 bits of 1st MAC address.

9.12.6.19 0x0050+0x08*N EMAC MAC Address High Register N (Default Value: 0x0000_FFFF)

Offset: 0x0050+0x08*N (N=1~7)		*N (N=1~7)	Register Name: EMAC_ADDR_HIGHN
Bit	Read/Write Default/Hex Description		Description
			MAC_ADDR_CTL
21		0.40	MAC Address Valid
31	R/W	0x0	0: Not valid
			1: Valid
		0x0	MAC_ADDR_TYPE
			MAC Address Type
30	R/W		0: Used to compare with the destination address of the received
30			frame
			1: Used to compare with the source address of the received
			frame

Offset:	Offset: 0x0050+0x08*N (N=1~7)		Register Name: EMAC_ADDR_HIGHN	
Bit	Read/Write	Default/Hex	Description	
29:24	R/W	0x0	MAC_ADDR_BYTE_CTL MAC Address Byte Control Mask The lower bit of mask controls the lower byte of the MAC address. When the bit of mask is 1, do not compare the	
23:16	/	/	corresponding byte. /	
15:0	R/W	OxFFFF	MAC_ADDR_HIGH The upper 16 bits of the MAC address.	

9.12.6.20 0x0054+0x08*N EMAC MAC Address Low Register N (Default Value: 0x0000_0000)

Offset: 0x0054+0x08*N (N=1~7)		*N (N=1~7)	Register Name: EMAC_ADDR_LOWN
Bit	Read/Write	Default/Hex	Description
31:0	R/W	0x0	MAC_ADDR_LOWN The lower 32 bits of MAC address N (N: 1–7).

9.12.6.21 0x00B0 EMAC Transmit DMA Status Register (Default Value: 0x0000_0000)

Offset	: 0x00B0	_	Register Name: EMAC_TX_DMA_STA	
Bit	Read/Write	Default/Hex	Description	
31:3	1	-		
			TX_DMA_STA	
			The State of Transmit DMA FSM	
			000: STOP, when reset or disable TX DMA	
			001: RUN_FETCH_DESC, fetching TX DMA descriptor	
			010: RUN_WAIT_STA, waiting for the status of TX frame	
2:0	R	0x0	011: RUN_TRANS_DATA, passing the frame from host memory to	
2.0		ono -	TX DMA FIFO	
			100: Reserved	
			101: Reserved	
			111: RUN_CLOSE_DESC, closing TX descriptor	
			110: SUSPEND, TX descriptor is unavailable or TX DMA FIFO	
			underflow	

9.12.6.22 0x00B4 EMAC Transmit DMA Current Descriptor Register (Default Value: 0x0000_0000)

Offset: 0x00B4			Register Name: EMAC_TX_DMA_CUR_DESC
Bit	Bit Read/Write Default/Hex		Description
31:0	R	020	TX_DMA_CUR_DESC
51.0	31:0 R 0x0		The address of current transmit descriptor.

9.12.6.23 0x00B8 EMAC Transmit DMA Current Buffer Address Register (Default Value: 0x0000_0000)

Offset: 0x00B8			Register Name: EMAC_TX_DMA_CUR_BUF		
Bit	Read/Write	Default/Hex	Description		
21.0	31:0 R 0x0	TX_DMA_CUR_BUF			
31:0		UXU	The address of current transmit DMA buffer.		
0x00C0 EMAC Receive DMA Status Register (Default Value: 0x0000_0000)					

9.12.6.24 0x00C0 EMAC Receive DMA Status Register (Default Value: 0x0000_0000)

Offset	: 0x00C0		Register Name: EMAC_RX_DMA_STA
Bit	Read/Write	Default/Hex	Description
31:3	1	1	
			RX_DMA_STA
			The State of RX DMA FSM
			000: STOP, when reset or disable RX DMA
			001: RUN_FETCH_DESC, fetching RX DMA descriptor
			010: Reserved
2:0	R	0x0	011: RUN_WAIT_FRM, waiting for the frame
			100: SUSPEND, RX descriptor is unavailable
			101: RUN_CLOSE_DESC, closing RX descriptor
			110: Reserved
			111: RUN_TRANS_DATA, passing the frame from host memory to
			RX DMA FIFO

0x00C4 EMAC Receive DMA Current Descriptor Register (Default Value: 0x0000_0000) 9.12.6.25

Offset: 0x00C4			Register Name: EMAC_RX_DMA_CUR_DESC
Bit	Bit Read/Write Default/Hex		Description
31:0	R	0x0	RX_DMA_CUR_DESC
31:0			The address of current receive descriptor

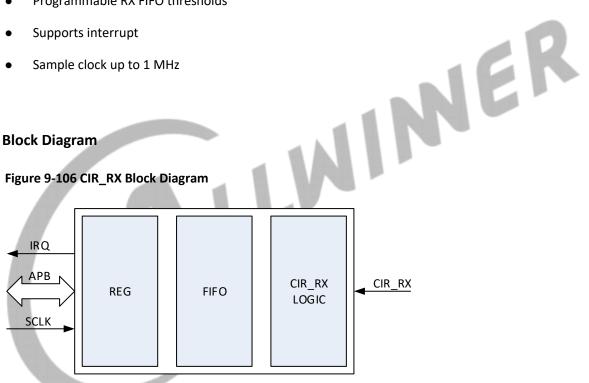
9.12.6.26 0x00C8 EMAC Receive DMA Current Buffer Address Register (Default Value: 0x0000_0000)

Offset: 0x00C8			Register Name: EMAC_RX_DMA_CUR_BUF
Bit	Bit Read/Write Default/Hex		Description
21.0	31:0 R 0x0	020	RX_DMA_CUR_BUF
51.0		0.00	The address of current receive DMA buffer

9.12.6.27 0x00D0 EMAC RGMII Status Register (Default Value: 0x0000_0000)

Offset	: 0x00D0		Register Name: EMAC_RGMII_STA
Bit	Read/Write	Default/Hex	Description
31:4	1	/	
			RGMII_LINK
3	R	0x0	The link status of the RGMII interface
5	N	0.00	0: Down
			1: Up
		4	RGMII_LINK_SPD
			The link speed of the RGMII interface
2:1		0x0	00: 2.5 MHz
2.1	R	0.00	01: 25 MHz
			10: 125 MHz
			11: Reserved
			RGMII_LINK_MD
0	D	0.0	The link mode of the RGMII interface
0	R	0x0	0: Half-Duplex
			1: Full-Duplex

9.13 CIR Receiver


9.13.1 Overview

The Consumer Infrared receiver (CIR RX) captures pulse from the IR Receiver module and uses the Run-Length Code (RLC) to encode the pulse.

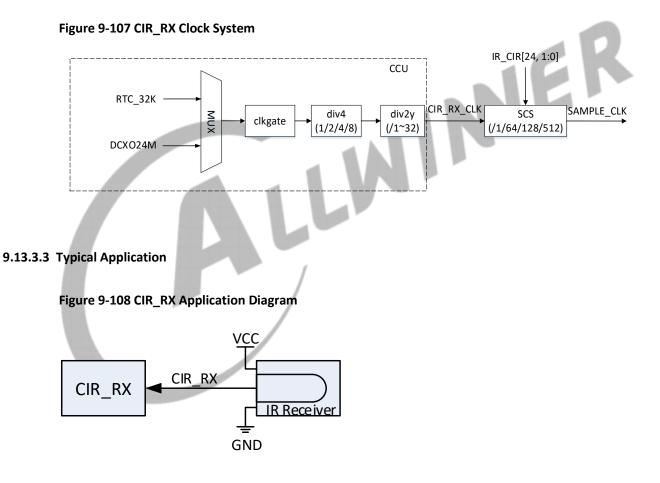
The CIR receiver has the following features:

- Supports CIR remote control receiver
- Supports NEC IR protocol
- 64x8 bits RX FIFO for data buffer
- Programmable RX FIFO thresholds
- Supports interrupt
- Sample clock up to 1 MHz

9.13.2 Block Diagram

The CIR_RX samples the input signal on the programmable frequency and records these samples into RX FIFO when one CIR signal is found on the air. The CIR_RX uses Run-Length Code (RLC) to encode pulse width. The encoded data is buffered in 64 levels and 8-bit width RX FIFO; the MSB bit is used to record the polarity of the receiving CIR signal, the rest 7 bits are used for the length of RLC. The maximum length of the RLC is 128. If the duration of one level (high or low level) is more than 128, another byte is used.

9.13.3 Functional Description


9.13.3.1 External Signals

The following table describes the external signals of CIR_RX.

Table 9-40 CIR_RX External Signals

Signal	Description	Туре
IR-RX	Consumer Infrared Receiver	1


9.13.3.2 Clock Sources

9.13.3.4 NEC Protocol Format

Figure 9-109 NEC Protocol

The CIR_RX module is a timer with a capture function.

When CIR_RX signals satisfy the Active Threshold (ATHR), the CIR receiver can start to capture. In the process, the signal is ignored if the pulse width of the signal is less than NTHR. When CIR_RX signals satisfy ITHR (Idle Threshold), the capture process is stopped and the Receiver Packet End interrupt is generated, then the Receiver Packet End Flag is asserted.

In a capture process, every effective pulse is buffered to FIFO in bytes according to the form of the Run-Length Code. The MSB bit of a byte is the polarity of pulse, and the rest 7 bits is pulse width by taking Sample Clock as a basic unit. This is the code form of the RLC-Byte. When the level changes or the pulse width counter overflows, the RLC-Byte is buffered to FIFO. The CIR_RX module receives the infrared signals transmitted by the infrared remote control, the software decodes the signals.

9.13.3.5 Operating Mode

Sample Clock

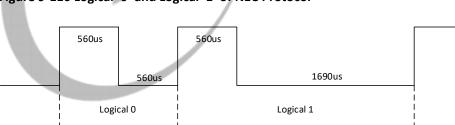
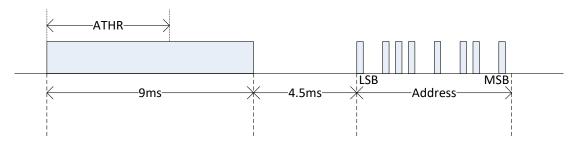


Figure 9-110 Logical '0' and Logical '1' of NEC Protocol

For NEC protocol, a logical "1" takes 2.25 ms (560 us+1680 us) to transmit, while a logical "0" is only half of that, being 1.12 ms (560 us+560 us).


For example, if the sample clock is 31.25 kHz, a sample cycle is 32 us, then 18 sample cycles are 560 us. So the RLC of 560 us low level is 0x12 (b'00010010), the RLC of 560 us high level is 0x92 (b'10010010). Then a logical "1" takes code 0x12 (b'00010010) and code 0xb5 (b'10110101) to transmit, a logical "0" takes code 0x12 and code 0x92 to transmit.

Active Threshold (ATHR)

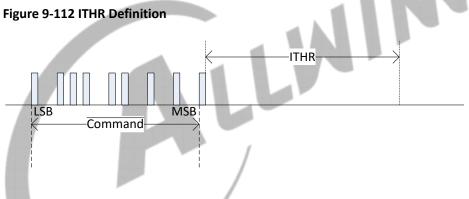
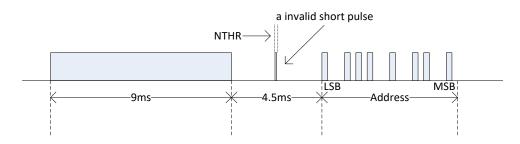

When the CIR_RX is in Idle state, if the electrical level of the CIR_RX signal changes (positive jump or negative jump), and the duration reaches this threshold, then the CIR_RX takes the starting of the signal as a lead code, and the CIR_RX turns into an active state and starts to capture CIR_RX signals.

Figure 9-111 ATHR Definition

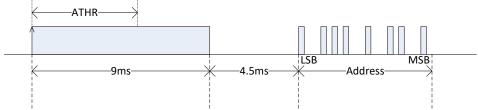
Idle Threshold (ITHR)


If the electrical level of CIR_RX signals has no change, and the duration reaches this threshold, then the CIR_RX enters into Idle state and ends this capture.

Noise Threshold (NTHR)

In the capture process, the pulse is ignored if the pulse width is less than the Noise Threshold.

Figure 9-113 NTHR Definition



Active Pulse Accept Mode (APAM)

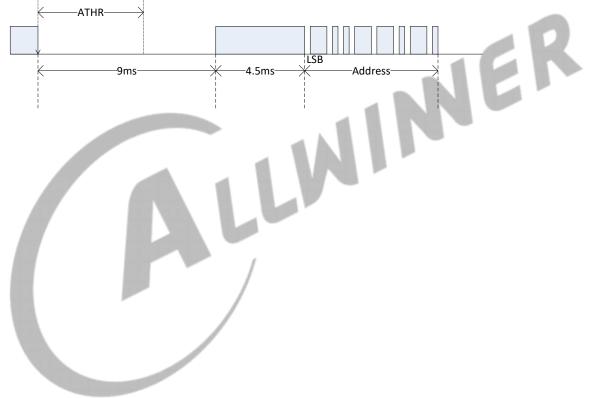
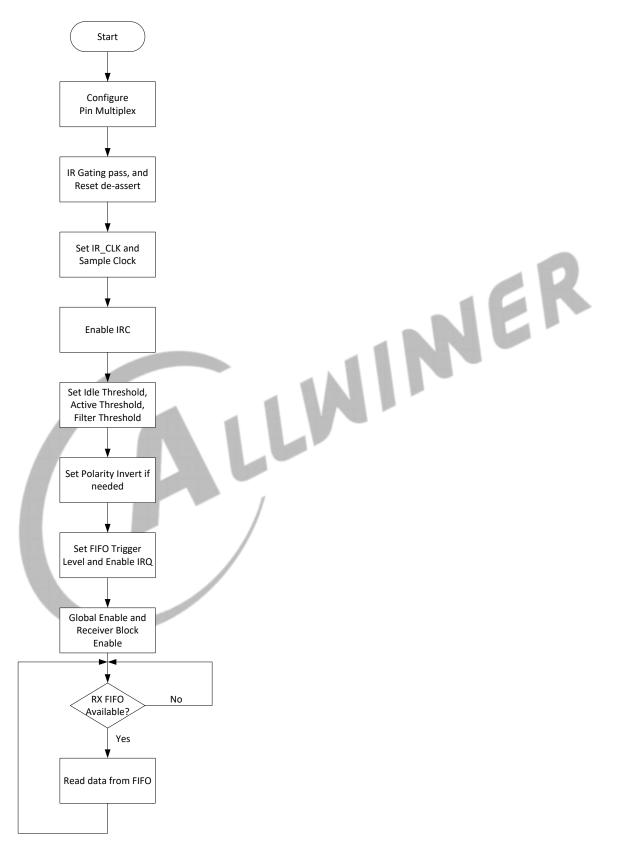

The APAM is used to fit the type of lead code. If a pulse does not fit the type of lead code, it is not regarded as a lead code even if the pulse width reaches ATHR.

Figure 9-114 APAM Definition

When APAM = 11b, a positive pulse is regarded as a valid leading code.


When APAM = 11b, a negative pulse is a invalid leading code and will be ignored.

9.13.4 Programming Guidelines

Figure 9-115 CIR Receiver Process

9.13.5 Register List

Module Name	Base Address
CIR_RX	0x07040000

Register Name	Offset	Description			
CIR_CTL	0x0000	CIR Control Register			
CIR_RXPCFG	0x0010	CIR Receiver Pulse Configure Register			
CIR_RXFIFO	0x0020	CIR Receiver FIFO Register			
CIR_RXINT	0x002C	CIR Receiver Interrupt Control Register			
CIR_RXSTA	0x0030	CIR Receiver Status Register			
CIR_RXCFG	0x0034	CIR Receiver Configure Register			
Register Description 0x0000 CIR Receiver Con	trol Register (Defa	ult Value: 0x0000_0000)			

9.13.6 Register Description

9.13.6.1 0x0000 CIR Receiver Control Register (Default Value: 0x0000_0000)

011			Desister Nerrey CID CTI		
Offset: 0x0000		[Register Name: CIR_CTL		
Bit	Read/Write	Default/Hex	Description		
31:8	/				
			АРАМ		
			Active Pulse Accept Mode		
7:6	R/W	0x0	00, 01: Both positive and negative pulses are valid as a leading		
	,		code		
			10: Only negative pulse is valid as a leading code		
			11: Only positive pulse is valid as a leading code		
			CIR ENABLE		
5:4	R/W	0x0	00–10: Reserved		
			11: CIR mode enable		
3:2	/	/	/		
			RXEN		
1	R/W	0x0	Receiver Block Enable		
L _	ry vv	0.00	0: Disable		
			1: Enable		

Offset: 0x0000			Register Name: CIR_CTL	
Bit	Bit Read/Write Default/Hex		Description	
			GEN	
			Global Enable	
0 R/W	0x0	A disable on this bit overrides any other block or channel		
0		0.0	enables and flushes all FIFOs.	
			0: Disable	
			1: Enable	

9.13.6.2 0x0010 CIR Receiver Pulse Configure Register (Default Value: 0x0000_0004)

Offset: 0x0010			Register Name: CIR_RXPCFG
Bit	Read/Write	Default/Hex	Description
31:3	/	/	
2	R/W	0x1	RPPI Receiver Pulse Polarity Invert O: Do not invert receiver signal 1: Invert receiver signal
1:0	1	1	/

9.13.6.3 0x0020 CIR Receiver FIFO Register (Default Value: 0x0000_0000)

Offset: 0x0020			Register Name: CIR_RXFIFO
Bit	Read/Write Default/Hex		Description
31:8	1	1	/
7:0	R	0x0	RBF
7.0 K		UXU	Receiver Byte FIFO

9.13.6.4 0x002C CIR Receiver Interrupt Control Register (Default Value: 0x0000_0000)

Offset: 0x002C			Register Name: CIR_RXINT	
Bit	t Read/Write Default/Hex		Description	
31:14	/	1	/	

Offset: 0x002C			Register Name: CIR_RXINT				
Bit	Read/Write	Default/Hex	Description				
13:8	R/W	0x0	RAL RX FIFO available received byte level for interrupt and DMA request TRIGGER_LEVEL = RAL + 1				
5	R/W	0x0	DRQ_EN RX FIFO DMA Enable 0: Disable 1: Enable When it is set to '1', the Receiver FIFO DRQ is asserted if reaching RAL. The DRQ is de-asserted when the condition fails.				
4	R/W	0x0	 RAI_EN RX FIFO Available Interrupt Enable 0: Disable 1: Enable When it is set to '1', the Receiver FIFO IRQ is asserted if reaching RAL. The IRQ is de-asserted when the condition fails. 				
3:2	1	/					
1	R/W	0x0	RPEI_EN Receiver Packet End Interrupt Enable 0: Disable 1: Enable				
0	R/W	0x0	ROI_EN Receiver FIFO Overrun Interrupt Enable 0: Disable 1: Enable				

9.13.6.5 0x0030 CIR Receiver Status Register (Default Value: 0x0000_0000)

Offset:	Offset: 0x0030		Register Name: CIR_RXSTA		
Bit	Bit Read/Write Default/Hex		Description		
31:15	/	1	/		

Offset:	Dx0030		Register Name: CIR_RXSTA			
Bit	Read/Write	Default/Hex	Description			
14:8	R	0x0	RAC RX FIFO Available Counter O: No available data in RX FIFO 1: 1-byte available data in RX FIFO 2: 2-bytes available data in RX FIFO 64: 64-bytes available data in RX FIFO			
7	R	0x0	STAT Status of CIR 0: Idle 1: Busy			
6:5	/	/	/			
4	R/W1C	0x0	RA RX FIFO Available 0: RX FIFO not available according to its level 1: RX FIFO available according to its level Writing 1 clears this bit.			
3:2	/	1	/			
1	R/W1C	0x0	RPE Receiver Packet End Flag O: STO was not detected. In CIR mode, one CIR symbol is receiving or not detected. 1: STO field or packet abort symbol (7'b0000,000 and 8'b0000,0000 for MIR and FIR) is detected. In CIR mode, one CIR symbol is received. Writing 1 clears this bit.			
			ROI			
0	R/W1C	0x0	Receiver FIFO Overrun 0: Receiver FIFO not overrun 1: Receiver FIFO overrun Writing 1 clears this bit.			

9.13.6.6 0x0034 CIR Receiver Configure Register (Default Value: 0x0000_1828)

Offset: 0x0034			Register Name: CIR_RXCFG		
Bit	Read/Write	Default/Hex	Description		
31:25	/	/	/		
			SCS2		
24	R/W	0x0	Bit2 of Sample Clock Select for CIR		
			This bit is defined by SCS bits below.		
			АТНС		
23	R/W	0x0	Active Threshold Control for CIR		
25		0.0	0: ATHR in a unit of (Sample Clock)		
			1: ATHR in a unit of (128*Sample Clocks)		
			ATHR		
			Active Threshold for CIR		
22:16	R/W	0x0	These bits control the duration of CIR from the idle to the active		
			state. The duration can be calculated by ((ATHR + 1)*(ATHC?		
			Sample Clock: 128*Sample Clock)).		
			ITHR		
		4	Idle Threshold for CIR		
			The Receiver uses it to decide whether the CIR command is		
			received. If there is no CIR signal on the air, the receiver is staying in IDLE status. One active pulse will bring the receiver		
			from IDLE status to Receiving status. After the CIR receiver ends,		
15:8	R/W	0x18	the inputting signal will keep the specified level (high or low		
15.8			level) for a long time. The receiver can use this idle signal		
			duration to decide that it has received the CIR command. The		
			corresponding flag is asserted. If the corresponding interrupt is		
			enabled, the interrupt line is asserted to the CPU.		
			When the duration of the signal keeps one status (high or low level) for the specified duration ((ITHR + 1)*128 sample_clk),		
			this means that the previous CIR command is finished.		

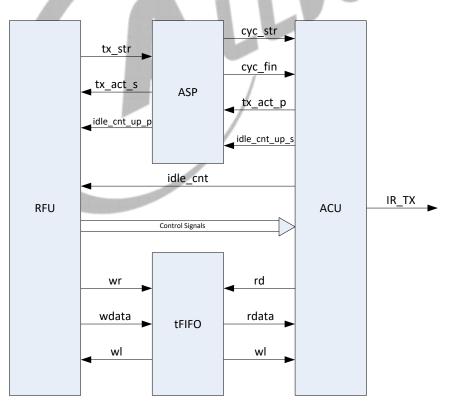
Bit Read/Write	Default/Hex	Descript	tion		
		Description			
7:2 R/W	0xA	 NTHR Noise Threshold for CIR When the duration of the signal pulse (high or low level) is less than NTHR, the pulse is taken as noise and should be discarded by hardware. O: All samples are recorded into RX FIFO 1: If the signal is only one sample duration, it is taken as noise and discarded. 2: If the signal is less than (<=) two sample duration, it is taken as noise and discarded. 61: If the signal is less than (<=) sixty-one sample duration, it is taken as noise and discarded. 			
1:0 R/W	0×0	SCS Sample SCS2 0 0 0 0 1 1 1 1	Clock Sele SCS[1] 0 0 1 1 1 0 0 0 1 1 1 1	ct for CIR SCS[0] 0 1 0 1 0 1 0 1 0 1	Sample Clock CIR_CLK/64 CIR_CLK/128 CIR_CLK/256 CIR_CLK/512 CIR_CLK Reserved Reserved Reserved Reserved

INER

9.14 CIR Transmitter

9.14.1 Overview

The CIR transmitter (CIR_TX) can transfer arbitrary waves which can be modulated with configurable carrier waves such as 38 kHz.


The CIR_TX has the following features:

- Supports CIR remote control transmitter
- 128 bytes FIFO for data buffer
- Configurable carrier frequency
- Supports Interrupt and DMA
- Supports handshake mode and waiting mode of DMA

9.14.2 Block Diagram

The following figure shows a block diagram of the CIR_TX.

9.14.3 Functional Description

9.14.3.1 External Signals

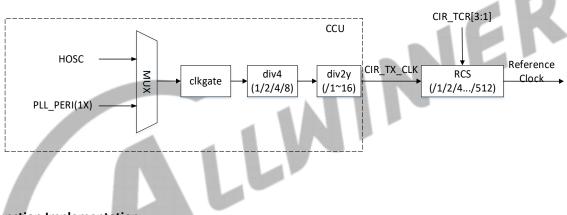

The following table describes the external signals of CIR_TX.

Table 9-41 CIR_TX External Signals

Signal	Description	Туре
CIR-TX	Consumer infrared transmitter	0

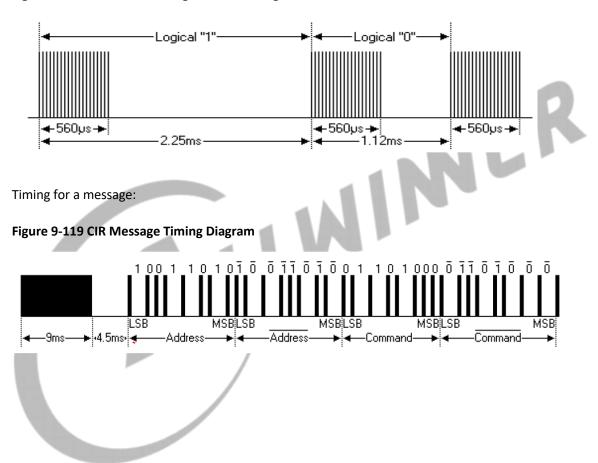
9.14.3.2 Clock Sources

9.14.3.3 Function Implementation

The CIR_TX is used to generate a waveform of arbitrary length, arbitrary shape, and no high-speed requirement, and it can change the data into the high-/low-level sequence of a certain length. Every transmitting data is in bytes, the Bit[7] of a byte means whether the level of a transmitting wave is high or low, the Bit[6:0] is the length of this wave. If the current transmitting frequency-division is 1, 0x88 is a high level of 8 cycles, 0x08 is a low level of 8 cycles. If the current transmitting frequency-division is 4, 0x88 is a high level of 32 cycles, 0x08 is a low level of 32 cycles.

The CIR_TX has two transmission modes: non-cycle transmission, and cycle transmission.

The non-cycle transmission is to transmit all the data in TX_FIFO until the FIFO is empty.


The cycle transmission is to transmit all the data in TX_FIFO, after the transmission completion, wait for a certain time to recover the data in TX_FIFO and then send it until a stop signal is detected. The data recovery in FIFO is implemented by clearing the read pointer.

9.14.3.4 Timing Diagram

The CIR remote control contains many protocols designed by different manufacturers. Here to NEC protocol as an example, the CIR-TX module uses a variable pulse-width modulation technique to encompass the various formats of infrared encoding for remote-control applications. A message is started by a 9 ms AGC burst, which is used to set the gain of the earlier CIR receivers. This AGC burst is then followed by a 4.5 ms space, which is then followed by the address and command.

Bit definition: the logical "1" takes 2.25 ms to transmit, while a logical "0" is only 1.12 ms.

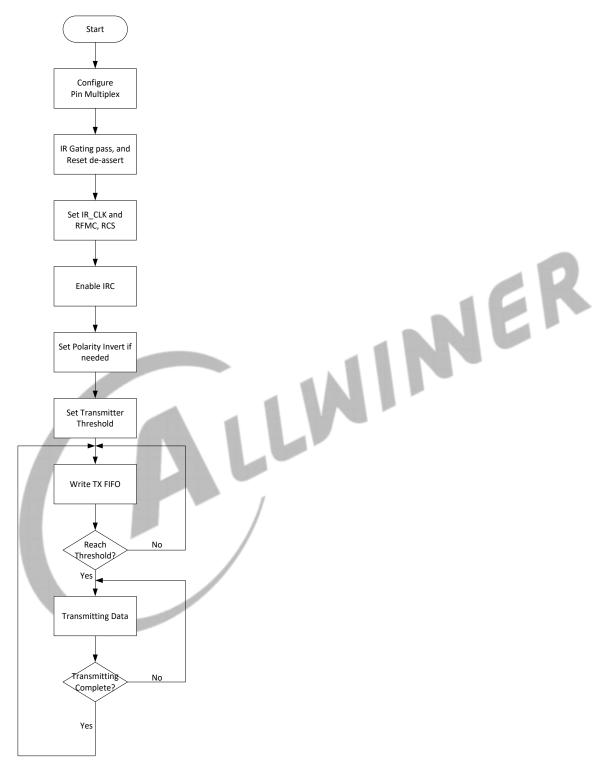


Figure 9-118 Definitions of Logical "1" and Logical "0"

9.14.4 Programming Guidelines

Figure 9-120 CIR Transmitter Process

9.14.5 Register List

Module Name	Base Address
CIR_TX	0x02003000

Register Name	Offset	Description
CIR_TGLR	0x0000	CIR Transmit Global Register
CIR_TMCR	0x0004	CIR Transmit Modulation Control Register
CIR_TCR	0x0008	CIR Transmit Control Register
CIR_IDC_H	0x000C	CIR Transmit Idle Duration Threshold High Bit Register
CIR_IDC_L	0x0010	CIR Transmit Idle Duration Threshold Low Bit Register
CIR_TICR_H	0x0014	CIR Transmit Idle Counter High Bit Register
CIR_TICR_L	0x0018	CIR Transmit Idle Counter Low Bit Register
CIR_TEL	0x0020	CIR TX FIFO Empty Level Register
CIR_TXINT	0x0024	CIR Transmit Interrupt Control Register
CIR_TAC	0x0028	CIR Transmit FIFO Available Counter Register
CIR_TXSTA	0x002C	CIR Transmit Status Register
CIR_TXT	0x0030	CIR Transmit Threshold Register
CIR_DMA	0x0034	CIR DMA Control Register
CIR_TXFIFO	0x0080	CIR Transmit FIFO Data Register

9.14.6 Register Description

9.14.6.1 0x0000 CIR Transmitter Global Register (Default Value: 0x0000_0000)

Offset: 0	Offset: 0x0000		Register Name: CIR_TGLR
Bit	Read/Write	Default/Hex	Description
31:8	/	/	/
			IMS
7	R/W	0x0	Internal Modulation Select
/		UXU	0: The transmitting signal is not modulated
			1: The transmitting signal is modulated internally

Offset: 0	Offset: 0x0000		Register Name: CIR_TGLR
Bit	Read/Write	Default/Hex	Description
			DRMC
			Duty ratio of modulated carrier is high level/low level.
6:5	R/W	0x0	00: Low level is equal to high level
0.5	r/ vv	UXU	01: Low level is the double of high level
			10: Low level is the triple of high level
			11: Reserved
4:3	/	/	/
		0x0	ТРРІ
2			Transmit Pulse Polarity Invert
2	R/W		0: Not invert transmit pulse
			1: Invert transmit pulse
			TR
			Transmit Reset
1	R/W	0x0	When this bit is set, the transmitting is reset. The FIFO will be
	.,		flushed, the TIC filed and the CSS field will be cleared during
			Transmit Reset. This field will automatically be cleared when the
			Transmit Reset is finished, and the CIR transmitter will state Idle.
			TXEN
0	R/W	0x0	Transmit Block Enable
			0: Disable the CIR Transmitter
			1: Enable the CIR Transmitter

9.14.6.2 0x0004 CIR Transmitter Modulation Control Register (Default Value: 0x0000_009E)

Offset: 0	x0004		Register Name: CIR_TMCR
Bit	Read/Write	Default/Hex	Description
31:8	/	/	/
			RFMC
			Reference Frequency of modulated carrier.
			Reference Frequency of modulated carrier based on a division of
			a fixed functional clock (FCLK). The range of the modulated
7:0	R/W	0x9E	carrier is usually 30 kHz to 60 kHz. Most consumer electronics is
			38 kHz.
			The default modulated carrier is 38 kHz when FCLK is 12 MHz.
			RFMC= FCLK/((N+1)*(DRMC+2)).

Offset: 0x0008			Register Name: CIR_TCR
Bit	Read/Write	Default/Hex	Description
31:8	/	/	/
			CSS
			Cyclical Pulse Start/Stop Control
7	R/W	0x0	0: Stop when cleared to '0'. From start to stop, all data in FIFO
			must be transmitted.
			1: Start. Start to transmit when it is set to '1'.
6:4	/	/	/
			RCS
			Reference Clock Select for CIR Transmit
			The data in TX_FIFO is used to describe the pulse in Run-Length
			Code. The basic unit of pulse width is Reference Clock.
			000: CIR Transmit reference clock is ir_clk
2.1	DAA	00	001: CIR Transmit reference clock is ir_clk/2
3:1	R/W	0x0	010: CIR Transmit reference clock is ir_clk/4
			011: CIR Transmit reference clock is ir_clk/8
			100: CIR Transmit reference clock is ir_clk/64
			101: CIR Transmit reference clock is ir_clk/128
			110: CIR Transmit reference clock is ir_clk/256
			111: CIR Transmit reference clock is ir_clk/512
			TTS
	R/W	0x0	Type of the transmission signal
0		UXU	0: The transmitting wave is a single non-cyclical pulse.
			1: The transmitting wave is a cyclical short-pulse.

9.14.6.3 0x0008 CIR Transmitter Control Register (Default Value: 0x0000_0000)

9.14.6.4 0x000C CIR Transmitter Idle Duration Counter High Bit Register (Default Value: 0x0000_0000)

Offset: 0x000C			Register Name: CIR_IDC_H
Bit	Read/Write	Default/Hex	Description
31:8	/	/	/

Offset: 0x000C			Register Name: CIR_IDC_H
Bit	Read/Write	Default/Hex	Description
			IDC_H
			Idle Duration Counter Threshold (High 4 bits)
3.0	3:0 R/W	0x0	Idle Duration = 128*IDC*Ts (IDC = 0~4095)
5.0		0.0	It is used in cyclical transmission mode. When all the data in FIFO
			is transmitted, the signals can be transmitted after a specific
		time.	

9.14.6.5 0x0010 CIR Transmitter Idle Duration Counter Low Bit Register (Default Value: 0x0000_0000)

Offset: 0x0010			Register Name: CIR_IDC_L
Bit	Read/Write	Default/Hex	Description
31:8	/	/	
3:0	R/W	0x0	IDC_L Idle Duration Counter Threshold (Low 8 bits) Idle Duration = 128*IDC*Ts (IDC = 0~4095) It is used in cyclical transmission mode. When all the data in FIFO is transmitted, the signals can be transmitted after a specific time.

9.14.6.6 0x0014 CIR Transmitter Idle Counter High Bit Register (Default Value: 0x0000_0000)

Offset: 0	Offset: 0x0014		Register Name: CIR_TICR_H
Bit	Read/Write	Default/Hex	Description
31:8	1	1	/
7:0	R	0x0	TIC_H Transmit Idle Counter_H (High 8 bits) It is used to count the idle duration of CIR transmitter by software. Count in 128*Ts (Sample Duration, 1/Fs) when the transmitter is idle, and it should be reset when the transmitter is active. When this counter reaches the maximum value (0xFFFF), it will stop automatically, and should not be cleared to zero.

9.14.6.7 0x0018 CIR Transmitter Idle Counter Low Bit Register (Default Value: 0x0000_0000)

Offset: 0	Offset: 0x0018		Register Name: CIR_TICR_L
Bit	Read/Write	Default/Hex	Description
31:8	/	/	/
			TIC_L
			Transmit Idle Counter_L (Low 8 bits)
			It is used to count the idle duration of CIR transmitter by
7:0	R	0x0	software.
7.0	N		Count in 128*Ts (Sample Duration, 1/Fs) when the transmitter is
			idle, and it should be reset when the transmitter is active.
			When this counter reaches the maximum value (0xFFFF), it will
			stop automatically, and should not be cleared to zero.

9.14.6.8 0x0020 CIR Transmitter FIFO Empty Register (Default Value: 0x0000_0000)

0	0x0020 CIR Transmitter FIFO Empty Register (Default Value: 0x0000_0000)			
	Offset: 0	x0020		Register Name: CIR_TEL
	Bit	Read/Write	Default/Hex	Description
Ī	31:8	1	1	
Ī				TEL
	7:0	R/W	0x0	TX FIFO empty Level for DRQ and IRQ.
				TRIGGER_LEVEL = TEL + 1

9.14.6.9 0x0024 CIR Transmitter Interrupt Control Register (Default Value: 0x0000_0000)

Offset: 0	x0024		Register Name: CIR_TXINT
Bit	Read/Write	Default/Hex	Description
31:3	/	/	/
			DRQ_EN
			TX FIFO DMA Enable
			0: Disable
2	R/W	0x0	1: Enable
			When it is set to '1', the TX FIFO DRQ is asserted if the number
			of the transmitting data in the FIFO is less than the RAL. The DRQ
			is de-asserted when the condition fails.

Offset: 0	x0024		Register Name: CIR_TXINT
Bit	Read/Write	Default/Hex	Description
			TAI_EN
1	R/W	0x0	TX FIFO Available Interrupt Enable
_	r, vv		0: Disable
			1: Enable
			TPEI_EN
			Transmit Packet End Interrupt Enable for Cyclical Pulse
			0: Disable
			1: Enable
0	R/W 0x0	ΩvΩ	
0		0.00	TUI_EN
			Transmitter FIFO Underrun Interrupt Enable for Non-cyclical
			Pulse
			0: Disable
			1: Enable

9.14.6.10 0x0028 CIR Transmitter FIFO Available Counter Register (Default Value: 0x0000_0080)

Offset: 0x0028			Register Name: CIR_TAC
Bit	Read/Write	Default/Hex	Description
31:8	/		1
7:0	R	0x80	TAC TX FIFO Available Space Counter 0x00: No available space in TX FIFO 0x01: 1 byte available space in TX FIFO 0x02: 2 bytes available space in TX FIFO 0x80: 128 bytes available space in TX FIFO

9.14.6.11 0x002C CIR Transmitter Status Register (Default Value: 0x0000_0002)

Offset: 0)x002C		Register Name: CIR_TXSTA
Bit	Read/Write	Default/Hex	Description
31:4	/	/	/

Offset: 0)x002C		Register Name: CIR_TXSTA
Bit	Read/Write	Default/Hex	Description
3	R	0x0	STCT Status of CIR Transmitter O: Idle 1: Active This bit will automatically set when the controller begins to transmit the data in the FIFO. The "1" will last when the data in the FIFO. It will automatically be cleared to "0" when all data in the FIFO is transmitted. The bit is for debugging. The output Level of Idle state is determined by the level of the last data output.
2	R	0x0	DRQ DMA Request Flag When set to '1', the TX FIFO DRQ is asserted if the number of the transmission data in the FIFO is less than the RAL. The DRQ is de- asserted when the condition fails. This bit is for debugging.
1	R/W	0x1	TAI TX FIFO Available Interrupt Flag 0: TX FIFO not available by its level 1: TX FIFO available by its level Writing 1 clears this bit.
	R/W	0x0	 TPE Transmitter Packet End Flag for Cyclical Pulse 0: Transmissions of address, control and data fields not completed 1: Transmissions of address, control and data fields completed
0	η, νν	UXU	TUR Transmitter FIFO Underrun Flag for Non-cyclical Pulse 0: No transmitter FIFO underrun 1: Transmitter FIFO underrun Writing 1 clears this bit.

9.14.6.12 0x0030 CIR Transmitter Threshold Register (Default Value: 0x0000_0000)

Offset: 0	Offset: 0x0030		Register Name: CIR_TXT
Bit	Read/Write	Default/Hex	Description
31:8	/	/	/
7:0	R/W	0x0	NCTT Non-cyclical Pulse Transmit Threshold The controller will trigger transmitting the data in the FIFO when the data byte number has reached the Transmit Threshold set in this field.

9.14.6.13 0x0034 CIR Transmitter DMA Control Register (Default Value: 0x0000_00A5)

Offset: 0	Dx0034		Register Name: CIR_DMA_CTL
Bit	Read/Write	Default/Hex	Description
31:8	/	1	
			DMA Handshake Configuration
7:0	R/W	0xA5	0xA5: DMA waiting cycle mode
			0xEA: DMA handshake mode

9.14.6.14 0x0080 CIR Transmitter FIFO Data Register (Default Value: 0x0000_0000)

Offset:	0x0080		Register Name: CIR_TXFIFO
Bit Read/Write Defa		Default/Hex	Description
31:8	1	1	/
			ТВГ
7:0	W	0x0	Transmit Byte FIFO
7.0		0,0	When the transmission is triggered, the data in the FIFO will be transmitted until the data number is transmitted completely.

Contents

10	Security System	1280
	10.1 Crypto Engine	1280
	10.1.1 Overview	1280
	10.1.2 Block Diagram	1281
	10.1.3 Functional Descriptions	1281
	10.1.4 Programming Guidelines	1301
	10.1.5 Register List	1304
	10.1.6 Register Description	1305
	10.2 Security ID	1309

Figures

Figure 10-1 CE Block Diagram	
Figure 10-2 DES Encryption and Decryption	
Figure 10-3 3DES Encryption and Decryption of a 3-key Operation and a 2-key Operation	
Figure 10-4 ECB Mode Encryption and Decryption	
Figure 10-5 CBC Mode Encryption and Decryption	
Figure 10-6 CTR Mode Encryption and Decryption	
Figure 10-7 CFB Mode Encryption and Decryption	
Figure 10-8 OFB Mode Encryption and Decryption	
Figure 10-9 CTS Mode Encryption and Decryption	
Figure 10-10 Structure of Task Descriptor Chaining	
Figure 10-11 Word Address of Message	
Figure 10-12 Byte Order	
Figure 10-13 Bit Order	
Figure 10-14 The Storage Method of 32-bit IV	
Figure 10-15 The Storage Method of 64-bit IV	
Figure 10-16 Task Request Process	1301

10 Security System

10.1 Crypto Engine

10.1.1 Overview

The Crypto Engine (CE) module is one encryption/decryption algorithm accelerator. It supports kinds of symmetric, asymmetric, Hash, and RNG algorithms.

The symmetric algorithm supports data encryption and decryption by following the data encryption standard (DES), 3DES, or advanced encryption standard (AES) algorithms. It can encrypt or decrypt a large amount of data effectively.

The Rivest-Shamir-Adleman (RSA) asymmetric algorithm is used for data encryption/decryption and digital signature verification. It is a public key encryption/decryption algorithm implemented through the modular exponentiation operation.

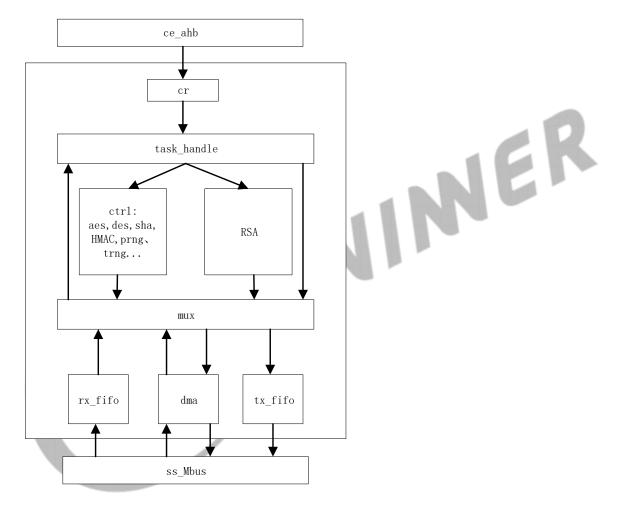
The Hash algorithm supports data integrity authentication and digital signature. The hash supports MD5, SHA1, SHA224, SHA256, SHA384, SHA512, HMAC-SHA1, and HMAC-SHA256 algorithms.

The RNG algorithm can generate true-random numbers and pseudo-random numbers.

The software interface of the CE is simple, only setting interrupt control, task description address, and load tag. The algorithm control information is written in memory by task descriptor, then the CE automatically reads it when executing a request. It supports parallel execution of 4 channels and has an internal DMA controller to transfer data between CE and memory.

The CE has the following features:

- Symmetrical algorithm: AES, DES, 3DES
- Hash algorithm: MD5, SHA1, SHA224, SHA256, SHA384, SHA512, HMAC-SHA1, HMAC-SHA256
- Asymmetrical algorithm: RSA512/1024/2048-bit
- 160-bit hardware PRNG with 175-bit seed
- 256-bit hardware TRNG
- Electronic codebook (ECB), cipher block chaining (CBC), counter (CTR), cipher text stealing (CTS), 128output feedback (OFB), 1-/8-/64-/128-cipher feedback (CFB) modes for AES algorithm
- ECB, CBC, CTR modes for DES/3DES algorithm
- 128-, 192-, 256-bit key size for AES algorithms
- 16-, 32-, 64-, 128-bit wide size for AES CTR mode
- 16-, 32-, 64-bit wide size for DES/3DES CTR mode

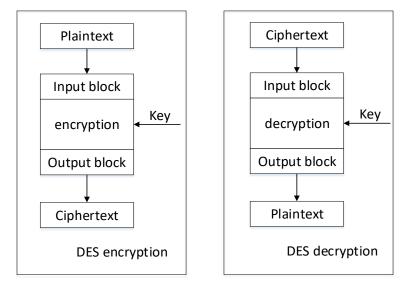


- One or more blocks mode for MD5/SHA1/SHA224/SHA256/SHA384/SHA512
- Internal DMA controller for data transfer with memory

10.1.2 Block Diagram

The following figure shows the block diagram of Crypto Engine.

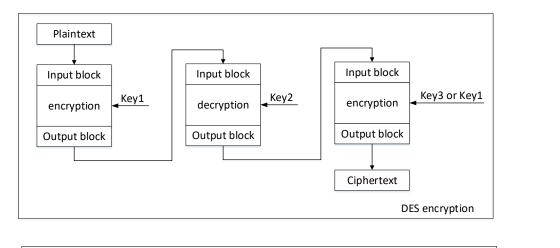
Figure 10-1 CE Block Diagram

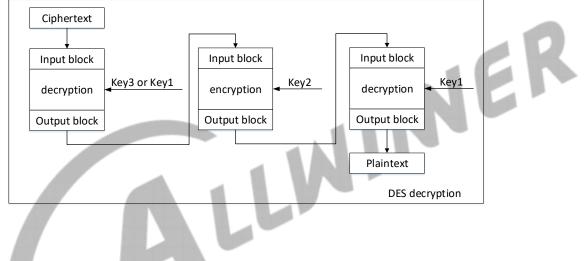

10.1.3 Functional Description

10.1.3.1 DES Algorithm

Figure 10-2 shows the DES encryption and decryption operation.

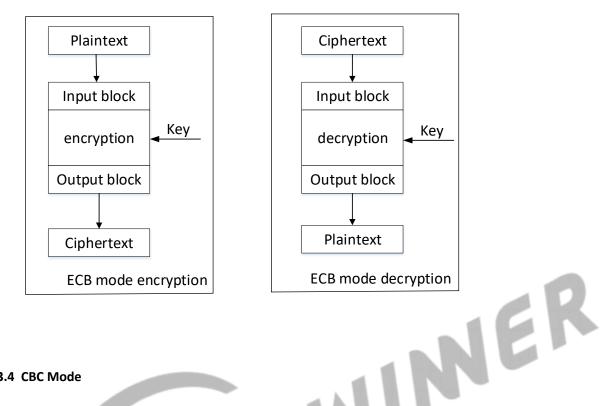
Figure 10-2 DES Encryption and Decryption




10.1.3.2 3DES Algorithm

The 3DES algorithm supports both 3-key and 2-key operations. A 2-key operation can be regarded as a simplified 3-key operation. To be specific, key 3 is represented by key 1 in a 2-key operation. Figure 10-3 shows the 3DES encryption and decryption operation of a 3-key operation and a 2-key operation.

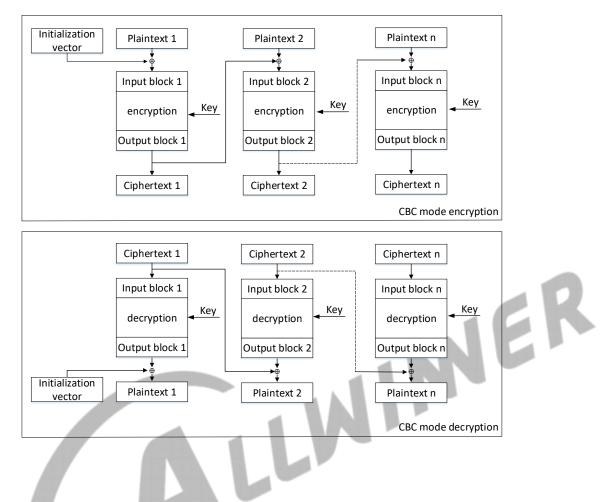
Figure 10-3 3DES Encryption and Decryption of a 3-key Operation and a 2-key Operation


10.1.3.3 ECB Mode

The ECB mode is a confidentiality mode that features, for a given key, the assignment of a fixed ciphertext block to each plaintext block, analogous to the assignment of code words in a codebook.

In ECB mode, encryption and decryption algorithms are directly applied to the block data. The operation of each block is independent, so the plaintext encryption and ciphertext decryption can be performed concurrently.

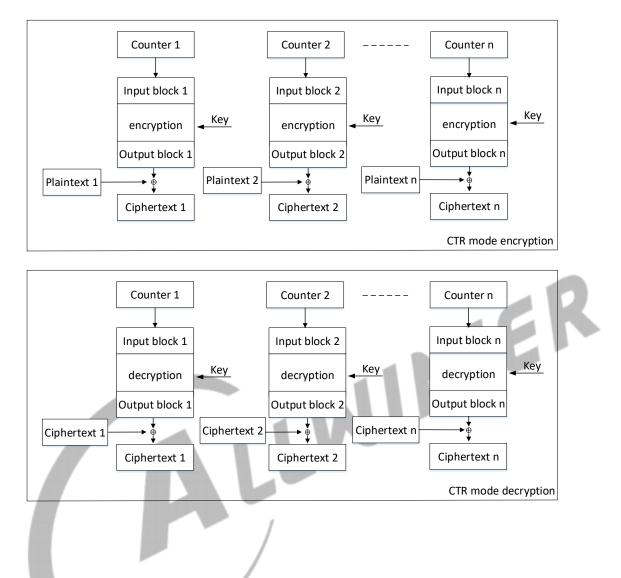
Figure 10-4 ECB Mode Encryption and Decryption



10.1.3.4 CBC Mode

The CBC mode is a confidentiality mode whose encryption process features the combining of the plaintext blocks with the previous ciphertext blocks. The CBC mode requires an initialization vector (IV) to combine with the first plaintext block. The encryption process of each plaintext block is related to the block processing result of the previous ciphertext blocks, so encryption operations cannot be concurrently performed in CBC mode. The decryption operation is independent of output plain text of the previous block, so decryption operations can be performed concurrently.

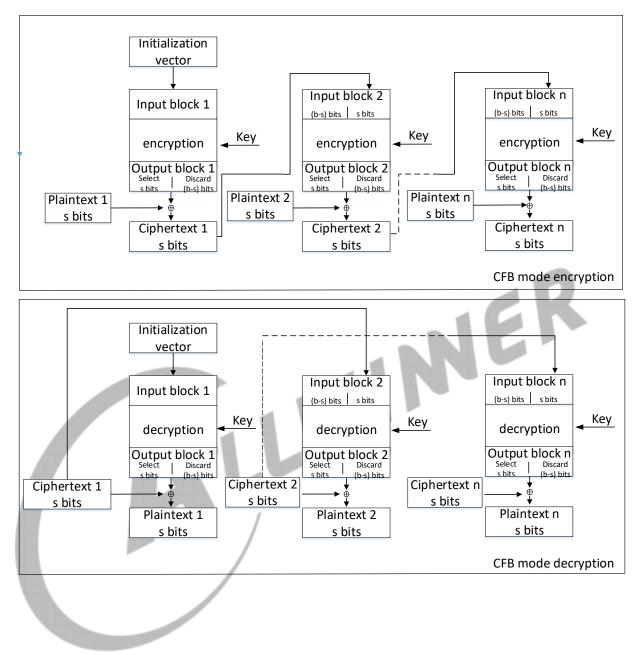
Figure 10-5 CBC Mode Encryption and Decryption



10.1.3.5 CTR Mode

The CTR mode is a confidentiality mode that features the application of the forward cipher to a set of input blocks, called counters, to produce a sequence of output blocks that are exclusive-ORed with the plaintext to produce the ciphertext, and vice versa. All of the counters must be distinct.

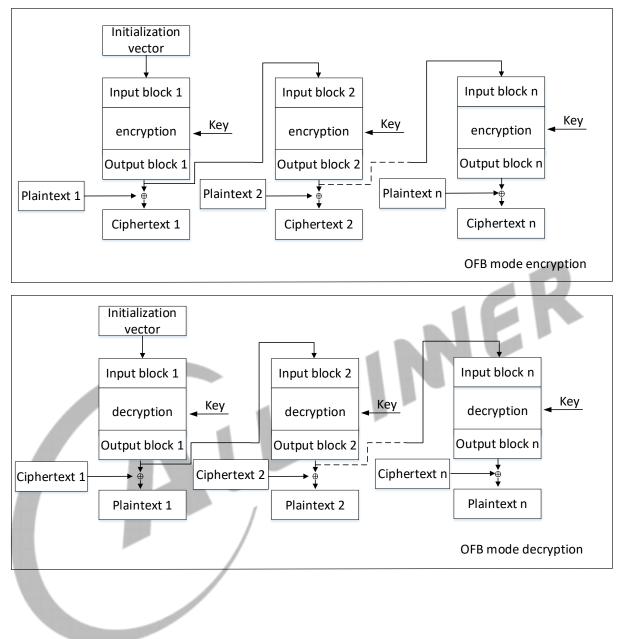
Figure 10-6 CTR Mode Encryption and Decryption


10.1.3.6 CFB Mode

The CFB mode is a confidentiality mode that features the feedback of successive ciphertext segments into the input blocks of the forward cipher to generate output blocks that are exclusive-ORed with the plaintext to produce the ciphertext, and vice versa. The CFB mode requires an IV as the initial input block, and the forward cipher operation is applied to the IV to produce the first output block. The first ciphertext segment is produced by exclusive-ORing the first plaintext segment with the *s* most significant bits of the first output block. The value of s is 1 bit, 8 bits, 64 bits, or 128 bits.

The following figure shows the s-bit CFB mode of the AES algorithms.

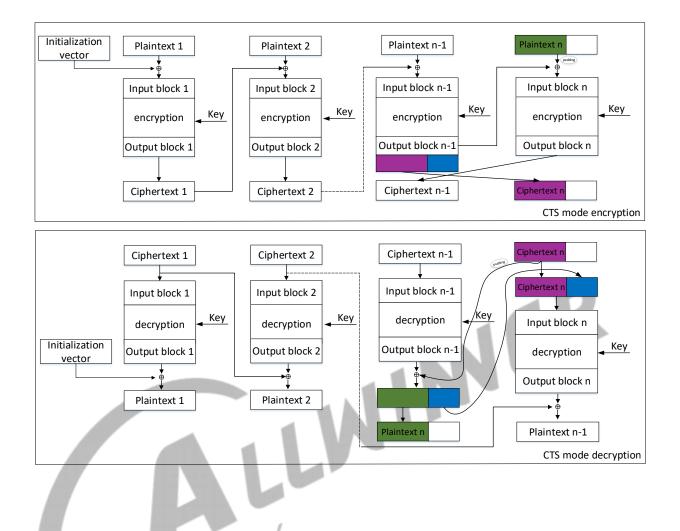
Figure 10-7 CFB Mode Encryption and Decryption



10.1.3.7 OFB Mode

The OFB mode is a confidentiality mode that features the iteration of the forward cipher on an IV to generate a sequence of output blocks that are exclusive-ORed with the plaintext to produce the ciphertext, and vice versa. If a same key is used, different IVs must be used to ensure operation security.

Figure 10-8 OFB Mode Encryption and Decryption



10.1.3.8 CTS Mode

The CTS mode is a confidentiality mode that accepts any plaintext input whose bit length is greater than or equal to the block size but not necessarily a multiple of the block size. Below are the diagrams for CTS encryption and decryption.

Figure 10-9 CTS Mode Encryption and Decryption

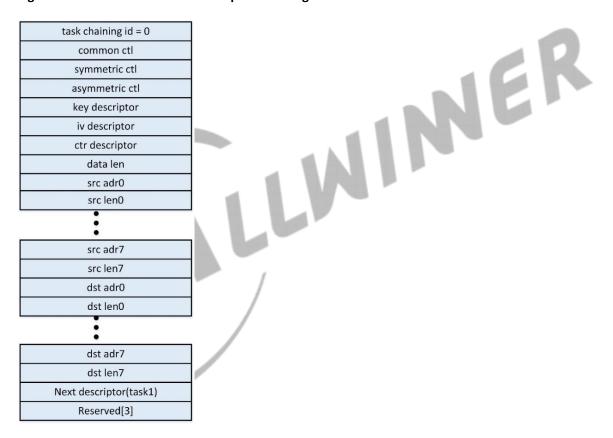
10.1.3.9 HASH Algorithm

The hash algorithms support MD5, SHA1, SHA224, SHA256, SHA384, SHA512, HMAC-SHA1, and HMAC-SHA256. All algorithms are iterative, one-way hash functions that can process a message to produce a condensed representation called a *message digest*. When a message is received, the *message digest* can be used to verify whether the data has changed, that is, to verify its integrity.

The hash algorithm of the CE supports block-aligned total length of the input data (padded by software), that is, a multiple of 64 bytes. The message length after padding by software is used as the configured data length for the hash algorithm.

10.1.3.10 RSA Algorithm

The RSA is a public key encryption/decryption algorithm implemented through the modular exponentiation operation.



The ciphertext is obtained as follows: $C = M^E \mod N$. The plaintext is obtained as follows: $M = C^D \mod N$.

M indicates the plaintext, C indicates the ciphertext, (N, E) indicates the public key, and (N, D) indicates the private key.

10.1.3.11 Task Descriptor

The software makes request through task descriptor, including algorithm type, algorithm mode, key address, source/destination address and size, and so on. The structure of the task descriptor is as follows.

Figure 10-10 Structure of Task Descriptor Chaining

The bit definitions of the task descriptor are as follows.

Task ID

Bit	Read/Write	Default/Hex	Description
31:4	/	/	/

Bit	Read/Write	Default/Hex	Description
	R/W	0x0	CHN
3:0			Task channel ID
5.0			Indicates which channel the task is running on.
			It supports 0 to 3.

Common Control

Bit	Read/Write	Default/Hex	Description
			Interrupt enable (IE) for the current task
			0: disable interrupt
			1: enable interrupt
			Represents whether an interrupt signal is generated when the task chain ends at the end of this task.
31	R/W	0x0	When the last task in a task chain ends, the operation of the task chain will end normally; if a task fails in the middle, the task chain will be aborted abnormally. And it is determined whether to generate an interrupt signal according to the IE configuration of the current task when the current task ends or aborts. Therefore, if you want to use interrupts, it is recommended that not only the IE of the last task of each task chain is configured to 1 to generate the end interrupt of the task chain, but also the IEs of other tasks in this task chain are also configured to 1. The purpose is to generate an interrupt signal once an abnormal error occurs in these tasks and the interrupt is aborted.
30:17	1	/	1
			IV mode
			IV mode for SHA1/SHA224/SHA256/SHA384/SHA512/MD5 or
16	R/W	0x0	constants
			0: use initial constants defined in FIPS-180
			1: use input iv
			Last HMAC plaintext
15	R/W	0x0	0: not the last HMAC plaintext package
			1: the last HMAC plaintext package
14:9	/	/	/

Bit	Read/Write	Default/Hex	Description
			OP DIR
			Algorithm Operation Direction
8	R/W	0x0	0: Encryption
0	.,	UNU	1: Decryption
			Configure according to the requirements of encryption or
			decryption.
7	/	/	/
			Algorithm Type
			0x0: AES
			0x1: DES
			0x2: Triple DES (3DES)
			0x10: MD5
			0x11: SHA-1
		0x0	0x12: SHA-224 0x13: SHA-256
6:0	R/W		0x13: SHA-256
	.,		0x14: SHA-384
			0x15: SHA-512
			0x16: HMAC-SHA1
			0x17: HMAC-SHA256
			0x20: RSA
			0x30: TRNG
			0x31: PRNG
			Others: reserved

Symmetric Control

Bit	Read/Write	Default/Hex	Description
31:24	/	/	/
			KEY_SELECT
	R/W	0x0	key select for AES
			0000: Select input CE_KEYx (Normal Mode)
23:20			0001: Select {SSK}
25.20			0010: Select {HUK}
			0011: Select {RSSK}
			0100-0111: Reserved
			1000-1111: Select internal Key n (n from 0 to 7)

Bit	Read/Write	Default/Hex	Description
			CFB_WIDTH
			AES-CFB width
10.10		0.0	00: CFB1
19:18	R/W	0x0	01: CFB8
			10: CFB64
			11: CFB128
			PRNG_LD
			Load new 15 bits key into linear feedback shift register (LFSR) for
			PRNG.
			When the algorithm type is PRNG, it is necessary to post-process
17	R/W	0x0	the random number output by PRNG through the linear shift
	,		operation to generate the operand.
			When the PRNG_LD is configured to 1, use iv_addr[14:0] as the
			input number for linear shift operation, and do XOR operation
			between the data and the random number output by PRNG to generate the post-processing result of further operation.
		0x0	CTS_LPKG
16	R/W		AES CTS last package flag
			When set to '1', it means this is the last package for AES-CTS mode (the size of the last package is larger than 128 bits).
15.12	,	/	
15:12	/	/	
			ALGORITHM_MODE
			CE algorithm mode
			0000: Electronic Code Book (ECB) mode
			0001: Cipher Block Chaining (CBC) mode
11:8	R/W	0x0	0010: Counter (CTR) mode
			0011: Cipher Text Stealing (CTS) mode
			0100: Output Feedback (OFB) mode
			0101: Cipher Feedback (CFB) mode
			Other: reserved
7:4	/	/	/
			CTR WIDTH
			Counter width for CTR mode
3:2	R/W	0x0	00: 16-bit Counter
5.2			01: 32-bit Counter
			10: 64-bit Counter
			11: 128-bit Counter

Confidential

Bit	Read/Write	Default/Hex	Description
			AES KEY SIZE
			00: 128-bit
1:0	R/W	0x0	01: 192-bit
			10: 256-bit
			11: Reserved

Asymmetric Control

Bit	Read/Write	Default/Hex	Description
31	/	/	/
			RSA Pubic Modulus Width
			000: 512-bit
30:28	R/W	0x0	001: 1024-bit
			010: 2048-bit
			Other: reserved
27:19	1	1	
			RSA MODE
18:16	R/W	0x0	RSA algorithm mode.
			For modular computation:
			000: modular exponent(RSA)
10.10			001: modular div
			010: modular mul
			011: modular inv
			others: reserved
15:0	1	1	/

Key Descriptor

Bit	Read/Write	Default/Hex	Description
31:0	R/W	0x0	Key Address The address of KEY that needs to be stored.

IV Descriptor

Bit	Read/Write	Default/Hex	Description
31:0	DAA	₹/₩ 0x0	IV Address
51.0	Γ/ VV		The address of IV that needs to be stored.

Counter Descriptor

Bit	Read/Write	Default/Hex	Description
31:0	31:0 R/W	0x0	CTR Data Output Address
51.0	ny vv	0.00	The address of CTR data output that needs to be stored.

Data Length

			The address of erry data output that needs to be stored.		
Data Length					
Bit	Read/Write	Default/Hex	Description		
31:0	R/W	0x0	Data Length Configure the data length of the corresponding segment. The data length size needs to be consistent with dst_data_length (destination data length 0 + + destination data length 7). The data length field in the task descriptor has different meanings for different algorithms. For AES-CTS, the data length field indicates byte numbers of source data, for others indicate word numbers of source data. For PRNG, the data length should be 5 words aligned. For TRNG, it should be 8 words aligned.		

Source Address 0~7

Bit	Read/Write	Default/Hex	Description
21.0	R/W 0x0	0.0	Source Data Address
31:0		The address of the source data that needs to be stored.	

Source Data Length 0~7

Bit	Read/Write	Default/Hex	Description		
			Source Data Length		
31:0	R/W	0x0	The length of the source data.		
			Unit: byte		

Destination Address 0~7

Bit	Read/Write	Default/Hex	Description			
31:0 R/W	0x0	Destination Data Address				
		The address of the destination data that needs to be stored.				

			The address of the destination data that needs to be stored.					
Destination Data Length 0~7								
Bit	Read/Write	Default/Hex	Description					
Bit	Read/Write	Default/Hex	Description Destination Data Length					
Bit 31:0	Read/Write	Default/Hex 0x0						
			Destination Data Length					

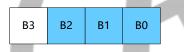
Next Descriptor Address

Bit	Read/Write	Default/Hex	Description
			Next Task Address
31:0	R/W	R/W 0x0	The address where the descriptor of the next task in a task-chain
			is saved. If there is the only task or the last task of a task-chain, the
			next task address must be 32'h0.

10.1.3.12 **Storing Message**

In the application, a message may not be stored contiguously in the memory, but divided into multiple segments. Or a piece of continuously stored messages can be artificially split into multiple pieces as needs.

Then each segment corresponds to a set of the source address and source length in the descriptor. Multiple segments correspond to groups 0-7 source address/source length in sequence.


Each task supports up to 8 message segments, and the data volume of each message segment supports up to 4 GWord (AES-CTS is 1 GByte). The total amount of all segments in a task (that is a package) supports up to 4 GWord (AES-CTS is 1 GByte). If a message is divided into multiple packages, all others are required to be whole words; when the last package of AES-CTS is less than one word, 0 needs to be padded, and those less than one word are counted as one word. The following figure shows the address order structure.

W0	BASE_ADDR
W1	BASE_ADDR + 0x04
W2	BASE_ADDR + 0x08
W3	BASE_ADDR + 0x0C
W4	BASE_ADDR + 0x10

Figure 10-11 Word Address of Message

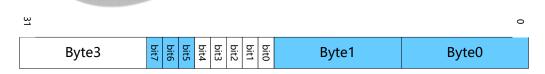

NER Byte order: low byte first, high byte last. When the data is less than one word, the low byte is filled first. The following figure shows the byte order structure (blue means it is filled by the message).

Figure 10-12 Byte Order

Bit order: high bit first, low bit last. When the data is less than one Byte, the high bit is filled first. The following figure shows the bit order structure.

10.1.3.13 **Storing Key**

The length of KEY must be an integer multiple of word, refer to section 10.1.3.15 "Algorithm Length Properties".

10.1.3.14 **Storing IV**

For different algorithms, the length of IV is different. But they are integer multiples of word. To keep the byte order of IV and HASH digest output consistent, the byte order of IV is different from that of the message. For the multi-packet operation, the first address of the digest output result of the previous HASH can be directly configured to the first address of the next IV, and the software does not need to do any processing on the digest.

The following figure shows the storage method of 32-bit IV value.

IV0[31:0]	BASE_ADDR						
IV1[31:0]	BASE_ADDR + 0x04						
IV7[31:0]	BASE_ADDR + 0x1C						
The following figure shows the storage method of 64-bit IV value. Figure 10-15 The Storage Method of 64-bit IV							
IV0[63:32]	BASE_ADDR						

Figure 10-14 The Storage Method of 32-bit IV

Figure 10-15 The Storage Method of 64-bit IV
--

BASE_ADDR
BASE_ADDR + 0x04
BASE_ADDR + 0x08
BASE_ADDR + 0x0C
BASE_ADDR
BASE_ADDR + 0x3C

10.1.3.15 **Algorithm Length Properties**

The algorithm length has different requirements for different algorithms.

Algorithm		Alignment	Software			
Algorithm	Source Size	Destination Size	KEY	IV	Alignment	Padding
AES (except CTS)	< 4 GWord	< 4 GWord	AES-128: 4 Word AES-192: 6 Word AES 256: 8 Word	4 Word	Word- aligned	need
AES-CTS	< 1 GByte	< 1 GByte	AES-128: 4 word AES-192: 6 word AES 256: 8 word	4 Word	Word- aligned	need
DES	< 4 GWord	< 4 GWord	2 Word	2 Word	Word- aligned	need
TDES	< 4 GWord	< 4 GWord	6 Word	2 Word	Word- aligned	need

Table 10-1 Symmetric Algorithm Configuration Properties

Table 10-2 Hash Algorithm Configuration Properties

					ungricu		
Table 10-2 Hash Algorithm Configuration Properties							
Algorithm		Length S	etting			Software	
Algorithm	Source Size	Destination Size	KEY	IV	Alignment	Padding	
MD5	< 4 GWord	4 Word	Fixed to 0	4 Word	Word- aligned	need	
SHA-1	< 4 GWord	5 Word	Fixed to 0	5 Word	Word- aligned	need	
SHA-224	< 4 GWord	8 Word	Fixed to 0	8 Word	Word- aligned	need	
SHA-256	< 4 GWord	8 Word	Fixed to 0	8 Word	Word- aligned	need	
SHA-384	< 4 GWord	16 Word	Fixed to 0	16 Word	Word- aligned	need	
SHA-512	< 4 GWord	16 Word	Fixed to 0	16 Word	Word- aligned	need	
HMAC- SHA1	< 4 GWord	5 Word	16 Word	5 Word	Word- aligned	need	
HMAC- SHA256	< 4 GWord	8 Word	16 Word	8 Word	Word- aligned	need	

Table 10-3 RNG Configuration Properties

Algorithm		Alignment	Software			
Algorithm	Source Size	Destination Size	KEY	IV	Alignment	Padding
TRNG	< 4 GWord	< 4 GWord	Fixed to 0	4 Word	Word- aligned	need
PRNG	< 4 GWord	< 4 GWord	6 Word	4 Word	Word- aligned	need

Table 10-4 Asymmetric Algorithm Configuration Properties

Algorithm		Alignment	Software			
Algorithm	Source Size	Destination Size	KEY	IV	Anghment	Padding
RSA512	16 Word	16 Word	16 Word	Not use IV	Word- aligned	need
RSA1024	32 Word	32 Word	32 Word	Not use IV	Word- aligned	need
RSA2048	64 Word	64 Word	64 Word	Not use IV	Word- aligned	need

10.1.3.16 Error Detection

The CE module includes error detection for task configuration, data computing error, and authentication invalid. When the algorithm type in task descriptor is read into the CE module, the CE will check whether this type is supported through checking algorithm type field in common control. If the type value is out of scope, the CE will issue interrupt signal and set error state. Each type has certain input and output data size. After getting a task descriptor, the input size and output size configuration will be checked to avoid size error. If the size configuration is wrong, the CE will issue interrupt signal and set error state.

10.1.3.17 Clock Requirement

Clock Name	Description	Requirement
hclk	AHB bus clock	24 MHz – 200 MHz
mclk	MBUS clock	24 MHz – 400 MHz
ce_clk	CE work clock	24 MHz – 400 MHz

10.1.4 Programming Guidelines

10.1.4.1 Symmetrical/Asymmetrical/Hash/RNG Algorithm Operation Process

The following figure shows the process of an algorithm operation.

- Step 1 The software should configure a task descriptor in memory, including the related fields in the descriptor. The channel id corresponds to one channel in CE. According to algorithm type, the software should set the fields in common control, symmetric control, asymmetric control, then provide key/iv/ctr address and the data length of this task. The source and destination address and size are set based on the upper application. If there is another task concatenating after this task, then set its descriptor address at the next descriptor field. For more details for task descriptor, see section 10.1.4.2, section 10.1.4.3 and section 10.1.4.4.
- **Step 2** The software should set registers. Configure the first address of the task descriptor structure to <u>CE</u> <u>Task Descriptor Address Register</u>. Configure the source/destination address to <u>CE Current Source</u> <u>Address Register/CE Current Destination Address Register</u>.
- **Step 3** Enable the end interrupt of the corresponding task channel by setting <u>CE Interrupt Control Register</u>.
- Step 4 The software reads <u>CE Task Load Register</u> to ensure that the bit0 is 0. If the bit0 is not read out to be 0, wait until it is 0, then configure the bit0 to be 1 to start task.
- Step 5 Wait for interrupt status by reading <u>CE Interrupt Status Register</u>.
- **Step 6** Read the result from the destination address.

Step 7 Clear the interrupt.

10.1.4.2 Configuring Task Descriptor of AES

- **Common control**: Configure <u>Common Control[6:0]</u> to 0x0 to select AES algorithm type.
- **Symmetric control**: According to the corresponding algorithm requirements, configure <u>Symmetric Control</u> to select the key size, CTR width, CTS last package flag, CFB width, and AES algorithm mode, and so on.
- Asymmetric control: The symmetric algorithm does not need to be configured for this field.
- **Key descriptor**: Because the storage of the key requires word alignment, ensure that this descriptor is the first address of the KEY (word address).
- IV descriptor: In the task that requires the IV value, configure the first address of the storage space where the IV is stored here. Because the storage of the IV requires word alignment, ensure that this descriptor is the first address of the IV (word address).
- Data length: Configure the data length of the corresponding segment. The data length size needs to be consistent with dst_data_length (destination data length 0 +... + destination data length 7). When the algorithm is CTS mode, the higher 30-bit of the data length is the word numbers of data volume; when the data_length[1:0] is 0, the data length is the higher 30-bit, otherwise it is increased by 1. For AES CTS, the data length indicates the byte numbers of the source data; for other algorithms, it indicates the word numbers.
- **Source address**: The first address of source data segments. Because the storage of the source data requires word alignment, ensure that this descriptor is the first address (word address).
- **Source data length**: The data volume of source data segments. The unit is word, and those less than one word are counted as one word. Note that only the last word of the entire message is allowed to be non-integer words, and the others must be integer words.
- **Destination address**: The first address of destination data segments. Because the storage of the destination data requires word alignment, ensure that this descriptor is the first address (word address).
- **Destination data length**: The data volume of destination data segments. The unit is word, and those less than one word are counted as one word. Note that only the last word of the entire message is allowed to be non-integer words, and the others must be integer words.
- **Next descriptor**: The first address of the next task descriptor. Because the storage of the descriptor requires word alignment, ensure that this descriptor is the first address (word address).
- **Reserved**: Configure to 0x0.

10.1.4.3 Configuring Task Descriptor of HASH

- Common control
 - > Algorithm type: Configure <u>Common Control</u>[6:0] to select SHA or HMAC algorithm type.
 - Last HMAC plaintext: If the algorithm type is HMAC, and the task is the last package of the message or if the message has only one package, then <u>Common Control[15]</u> needs to set to 1.
 - IV mode: The <u>Common Control[16]</u> (IV MODE) bit is only set to 1 in the following two scenarios, except that the bit must be configured to 0. (1). When the message is split into multiple packages, the <u>Common Control[16]</u> bit of other packages needs to be set to 1, except that the bit of the first package needs to be cleared to 0. (2). In special applications, if you need to customize the IV value to form the initial value of a certain HASH algorithm, you need to set the <u>Common Control[16]</u> bit of the first (or only one) package to 1, and the first address of the storage space where the customized IV value is stored in IV address.
- Key descriptor: Because the storage of the key requires word alignment, ensure that this descriptor is the first address of the KEY (word address).
- **IV descriptor**: In the task that requires the IV value, configure the first address of the storage space where the IV is stored here. Because the storage of the IV requires word alignment, ensure that this descriptor is the first address of the IV (word address).
- **Data length**: Configure the data length of the corresponding segment. The data length size needs to be consistent with dst_data_length (destination data length 0 +... + destination data length 7).
- **Source address**: The first address of source data segments. Because the storage of the source data requires word alignment, ensure that this descriptor is the first address (word address).
- Source data length: The data volume of source data segments. The unit is word, and those less than one word are counted as one word. Note that only the last word of the entire message is allowed to be non-integer words, and the others must be integer words.
- **Destination address**: The first address of destination data segments. Because the storage of the destination data requires word alignment, ensure that this descriptor is the first address (word address).
- **Destination data length**: The data volume of destination data segments. The unit is word, and those less than one word are counted as one word. Note that only the last word of the entire message is allowed to be non-integer words, and the others must be integer words.
- **Next descriptor**: The first address of the next task descriptor. Because the storage of the descriptor requires word alignment, ensure that this descriptor is the first address (word address).
- **Reserved**: Configure to 0x0.

10.1.4.4 Configuring Task Descriptor of RSA

- **Common control**: Configure <u>Common Control</u>[6:0] to 0x20 to select RSA algorithm type.
- Asymmetric control: Configure <u>Asymmetric Control[</u>30:28] to select the RSA width.
- **Key descriptor**: Because the storage of the key requires word alignment, ensure that this descriptor is the first address of the KEY (word address).
- **Data length**: Configure the data length of the corresponding segment. The data length size needs to be consistent with dst_data_length (destination data length 0 +... + destination data length 7).
- **Source address**: The first address of source data segments. Because the storage of the source data requires word alignment, ensure that this descriptor is the first address (word address).
- Source data length: The data volume of source data segments. The unit is word, and those less than one word are counted as one word. Note that only the last word of the entire message is allowed to be non-integer words, and the others must be integer words.
- **Destination address**: The first address of destination data segments. Because the storage of the destination data requires word alignment, ensure that this descriptor is the first address (word address).
- **Destination data length**: The data volume of destination data segments. The unit is word, and those less than one word are counted as one word. Note that only the last word of the entire message is allowed to be non-integer words, and the others must be integer words.
- Next descriptor: The first address of the next task descriptor. Because the storage of the descriptor requires word alignment, ensure that this descriptor is the first address (word address).
- **Reserved**: Configure to 0x0.

10.1.5 Register List

Module Name	Base Address
CE_NS	0x03040000

Register Name	Offset	Description
CE_TDA	0x0000	Task Descriptor Address
CE_ICR	0x0008	Interrupt Control Register
CE_ISR	0x000C	Interrupt Status Register
CE_TLR	0x0010	Task Load Register
CE_TSR	0x0014	Task Status Register
CE_ESR	0x0018	Error Status Register

Register Name	Offset	Description
CE_CSA	0x0024	DMA Current Source Address
CE_CDA	0x0028	DMA Current Destination Address
CE_TPR	0x002C	Throughput Register

10.1.6 Register Description

10.1.6.1 0x0000 CE Task Descriptor Address Register (Default Value: 0x0000_0000)

Offset: 0x0000			Register Name: CE_TDA
Bit	Read/Write	Default/Hex	Description
21.0		Task Descriptor Address	
31:0	R/W	0x0	Configure as the first address of the descriptor structure.
0x0008 CE Interrupt Control Register (Default Value: 0x0000_0000)			

10.1.6.2 0x0008 CE Interrupt Control Register (Default Value: 0x0000_0000)

Offset: 0x0008		Register Name: CE_ICR
Read/Write	Default/Hex	Description
/	\wedge	
		Task Channel3~0 Interrupt Enable
R/W	0x0	0: Disable
		1: Enable
/	/	/ /

10.1.6.3 0x000C CE Interrupt Status Register (Default Value: 0x0000_0000)

Offset: 0x000C			Register Name: CE_ISR
Bit	Read/Write	Default/Hex	Description
31:4	/	/	/

Offset: 0x000C			Register Name: CE_ISR
Bit	Read/Write	Default/Hex	Description
			Task Channel3~0 End Pending
			0: Not finished
			1: Finished
			It indicates whether task is completed.
			Write the corresponding channel bit of the register to clear the end flag.
3:0	R/W1C	0x0	When the last task in the task chain ends, the operation of the task chain will end normally. If the task fails in the middle, the task chain will be aborted. The CE_ISR register will be automatically updated when it ends normally or aborts abnormally. And it is determined whether to generate an interrupt signal according to the IE configuration (bit31) of <u>Common Control</u> when the current task ends or aborts. If using interrupt, after receiving the interrupt, read the corresponding channel bit of CE_ISR to judge whether it ends successfully or stops failure.
			If not using interrupt, the CE_ISR status register can be continuously queried for the channel bit until the successful end flag is set or the failure stop flag is set. Write the corresponding channel bit of the register to clear the end flag. If it fails to stop, you can read the error code on the channel corresponding to the <u>CE_ESR</u> register.

10.1.6.4 0x0010 CE Task Load Register (Default Value: 0x0000_0000)

Offset: 0	Offset: 0x0010		Register Name: CE_TLR
Bit	Read/Write	Default/Hex	Description
31:1	/	/	/
0	R/W	0x0	Task Load When set, the CE can load the descriptor of task if the task FIFO is not full.

10.1.6.5 0x0014 CE Task Status Register (Default Value: 0x0000_0000)

Offset: 0x0014			Register Name: CE_TSR
Bit	Read/Write	Default/Hex	Description
31:2	/	/	/
			Running Channel Number
			00: Task channel0
1:0	R	0x0	01: Task channel1
			10: Task channel2
			11: Task channel3

10.1.6.6 0x0018 CE Error Status Register (Default Value: 0x0000_0000)

0x0018 CI	x0018 CE Error Status Register (Default Value: 0x0000_0000)					
Offset: 0x0018			Register Name: CE_ESR			
Bit	Read/Write	Default/Hex	Description			
31:16	1	1				
			Task Channel3 Error Type			
			xxx1: Algorithm not support			
15:12	R/W1C	0x0	xx1x: Data length error			
			x1xx: keysram access error for AES			
			1xxx: Reserved			
			Task Channel2 Error Type			
			xxx1: Algorithm not support			
11:8	R/W1C	0x0	xx1x: Data length error			
			x1xx: keysram access error for AES			
			1xxx: Reserved			
			Task Channel1 Error Type			
			xxx1: Algorithm not support			
7:4	R/W1C	0x0	xx1x: Data length error			
			x1xx: keysram access error for AES			
			1xxx: Reserved			
			Task Channel0 Error Type			
			xxx1: Algorithm not support			
3:0	R/W1C	0x0	xx1x: Data length error			
			x1xx: keysram access error for AES			
			1xxx: Reserved			

10.1.6.7 0x0024 CE Current Source Address Register (Default Value: 0x0000_0000)

Offset: 0x0024			Register Name: CE_CSA
Bit	Read/Write	Default/Hex	Description
31:0	31:0 R 0x0	0x0	CUR_SRC_ADDR
51.0	n	0.00	Current source address

10.1.6.8 0x0028 CE Current Destination Address Register (Default Value: 0x0000_0000)

Offset: 0x0028			Register Name: CE_CDA		
Bit	Read/Write	Default/Hex	Description		
31:0 R	0.0	CUR_DST_ADDR			
	К	0x0	Current destination address		
0x002C CE Throughput Register (Default Value: 0x0000_0000)					

10.1.6.9 0x002C CE Throughput Register (Default Value: 0x0000_0000)

Offset: 0x002C			Register Name: CE_TPR
Bit	Read/Write	Default/Hex	Description
31:0	R/WC	0x0	TP_NUM It indicates the throughput writing to this register at last time. Writing to this register will clear it to 0.

10.2 Security ID

The Security ID (SID) is used to program and read keys which include chip ID, thermal sensor, HASH code, and so on.

The SID module has the following features:

- 2 Kbits electrical fuse (eFuse)
- Backup eFuse information by using SID_SRAM
- A fuse only can program one time
- Burning the key to the SID
- Reading the key use status in the SID
- Loading the key to the CE

Before performing the burning operation, ensure that the power supply of the eFuse power pin is stable. After the burning operation is completed, cancel the power supply of the eFuse power pin.

Appendix: Glossary

The following table contains acronyms and abbreviations used in this document.

Term	Meaning
Α	
ADC	Analog-to-Digital Converter
AE	Automatic Exposure
AEC	Audio Echo Cancellation
AES	Advanced Encryption Standard
AF	Automatic Focus
AGC	Automatic Gain Control
АНВ	AMBA High-Speed Bus
ALC	Automatic Level Control
ANR	Active Noise Reduction
АРВ	Advanced Peripheral Bus
ARM	Advanced RISC Machine
AVS	Audio Video Synchronization
AWB	Automatic White Balance
В	
BROM	Boot ROM
С	
CIR	Consumer Infrared
CMOS	Complementary Metal-Oxide Semiconductor
CP15	Coprocessor 15
СРО	Central Processing Unit
CRC	Cyclic Redundancy Check
CSI	Camera Serial Interface
CVBS	Composite Video Broadcast Signal
D	
DDR	Double Data Rate
DES	Data Encryption Standard
DLL	Delay-Locked Loop
DMA	Direct Memory Access
DRC	Dynamic Range Compression
DVFS	Dynamic Voltage and Frequency Scaling
E	
ECC	Error Correction Code
eFuse	Electrical Fuse, A one-time programmable memory
EHCI	Enhanced Host Controller Interface
eMMC	Embedded Multi-Media Card
ESD	Electrostatic Discharge
F	-
FBGA	Fine Pitch Ball Grid Array

Term	Meaning
	Fireware Exchange Launch
	First In First Out
G	
	General Purpose Input Output
I	
	Inter Integrated Circuit
	Inter IC Sound
	Image Signal Processor
J	
	Joint Electron Device Engineering Council
	Joint Photographic Experts Group
	Joint Test Action Group
L	
	Liquid-Crystal Display
	Low Profile Fine Pitch Ball Grid Array
	Least Significant Bit
	Low Voltage Differential Signaling
M	
	Media Access Control
	Microphone
	Mobile Industry Processor Interface
	Multi-Level Cell
	Multimedia Card
	Motion Pictures Expert Group
	Most Significant Bit
N	
N/A	Not Application
	Non Maskable Interrupt
	National Television Standards Committee
NVM	Non Volatile Storage Medium
0	
ОНСІ	Open Host Controller Interface
	One Time Programmable
	One Wire Audio
Р	
PAL	Phase Alternating Line
PCM	Pulse Code Modulation
	Physical Layer Controller
PID	Packet Identifier
PLIC	Platform-Level Interrupt Controller
PLL	Phase-Locked Loop
	Phase-Locked Loop Power-On Reset

Term	Meaning	
PWM	Pulse Width Modulation	
R		
R	Read only/non-Write	
RGB	Read Green Blue	
RGMII	Reduced Gigabit Media Independent Interface	
RMII	Reduced Media Independent Interface	
ROM	Read Only Memory	
RSA	Rivest-Shamir-Adleman	
RTC	Real Time Clock	
S		
SAR	Successive Approximation Register	
SD	Secure Digital	
SDIO	Secure Digital Input Output	
SDK	Software Development Kit	
SDRAM	Synchronous Dynamic Random Access Memory	
SDXC	Secure Digital Extended Capacity	
SLC	Single-Level Cell	
SoC	System on Chip	
SPI	Serial Peripheral Interface	
SRAM	Static Random Access Memory	
т		
TDES	Triple Data Encryption Standard	
TWI	Two Wire Interface	
U		
UART	Universal Asynchronous Receiver Transmitter	
UDF	Undefined	
USB DRD	Universal Serial Bus Dual Role Device	
UTMI	USB2.0 Transceiver Macrocell Interface	

Copyright©2022 Allwinner Technology Co.,Ltd. All Rights Reserved.

This documentation is the original work and copyrighted property of Allwinner Technology Co.,Ltd ("Allwinner"). No part of this document may be reproduced, modify, publish or transmitted in any form or by any means without prior written consent of Allwinner.

Trademarks and Permissions

Allwinner and the Allwinner logo (incomplete enumeration) are trademarks of Allwinner Technology Co.,Ltd. All other trademarks, trade names, product or service names mentioned in this document are the property of their respective owners.

Important Notice and Disclaimer

The purchased products, services and features are stipulated by the contract made between Allwinner Technology Co.,Ltd ("Allwinner") and the customer. All or part of the products, services and features described in this document may not be within the purchase scope or the usage scope. Please read the terms and conditions of the contract and relevant instructions carefully before using, and follow the instructions in this documentation strictly. Allwinner assumes no responsibility for the consequences of improper use (including but not limited to overvoltage, overclock, or excessive temperature).

The information in this document is provided just as a reference or typical applications, and is subject to change without notice. Every effort has been made in the preparation of this document to ensure accuracy of the contents. Allwinner is not responsible for any damage (including but not limited to indirect, incidental or special loss) or any infringement of third party rights arising from the use of this document. All statements, information, and recommendations in this document do not constitute a warranty or commitment of any kind, express or implied.

No license is granted by Allwinner herein express or implied or otherwise to any patent or intellectual property of Allwinner. Third party licences may be required to implement the solution/product. Customers shall be solely responsible to obtain all appropriately required third party licences. Allwinner shall not be liable for any licence fee or royalty due in respect of any required third party licence. Allwinner shall have no warranty, indemnity or other obligations with respect to third party licences.