Using Intel® C++ Compiler in Eclipse*
for Embedded Linux* targets

Contents
gL o 181 4 e o OSSP OTPRP |
How to integrate Intel® C++ compiler with Eclipse™ ...ocooivier e e L

Automatic Integration during Intel System Studio installationcccccviivri e 2

Manual Integration in EClipse™ ... e s e ey 2
Create a project with Intel® compiler in Eclipse® ... s srree s srrsesessnne e 4
Setting up the cross-build options for your embedded Linux™ Targetscccevcviviviiiccsvciniiinieneieninnn 0

Using gcc compatible sysroot Option ... e e sennnees e D

Using platform configuration ... e inrnr e e sssnsn e rnesesnssnnnnes T
Using Intel® compiler options in Eclipse™® ..o iiiiiieiiis e snese e s snnes e snnesesnnnns 10

BUIlD the ProjECE vuei i e s s e sesr e se s srn e e s n e e e ane e e s s rar e e s sn s rnesnnnnreessnsnrenennrnnees L2

Introduction

In embedded area, Eclipse*® is popular and widely used. GCC* is well supported in Eclipse* now, while
using Intel® C/C++ compiler (ICC), you can also easily use it with Eclipse*. This article will guide you to
integrate Intel® C/C++ compiler (component of Intel® System Studio 2015) with Eclipse* and starts to
build a hello-world project.

This articles applies for users who developer on a Windows* or Linux® host, and use an embedded
Linux targets, including Yocto Project™, Wind River® Linux*, CE Linux* (Note: Only Wind River* Linux*
provides official SDK (Toolchains) for Windows* host.)

How to integrate Intel® C++ compiler with Eclipse*

The integration is based on CDT (Eclipse* C/C++ Development Tools) plugins, and CDT is needed
before installing the ICC integration plugins. The prerequisites for successful Eclipse* integration is:

(1) Eclipse* 3.7 (Indigo) or above
(2) Eclipse* CDT 8.0

(3) Java Runtime Environment (JRE) version 6.0 (also called 1.6) update 11 or later.

Automatic Integration during Intel System Studio installation
Pay attention to below screenshot when installing, check the “Integrate into Eclipse*”.

Intel® System Studio 2015 =|E] X |
Intel® System Studio 2015

W - J = .
Welcome " Eclipse® Integration

License
Activation If you would like to use an Eclipse™® IDE, please point to an existing
_ Eclipse™ 4.2 (Juno), Eclipse™ 4.3 (Kepler) or 4.4 (Luna) installation on your
Optlons computer. If you do not already have an Eclipse* IDE for C/C++
L developers, we recommend to download it from
Installation http://www.eclipse.org/downloads/packages/eclipse-ide-cc-
developers/keplersr2 and follow the Eclipse® integration steps outlined in
Complete the Intel System Studio installation guide.

Integrate into Eclipse®

Eclipse™ location: ¢:\data\tools\ISS\eclipse Browse

Prev l l Next | Cancel

Manual Integration in Eclipse*
This is same with installing any other Eclipse® plugins, click the menu item "Help->Install New
Software..." and install from local directory which contains the plugins. See below the pop-up window

after clicking “Help -> Install New Software...”:

Awailable Software ‘

Select a site or enter the locatlon of a site :)f
a r
Work with: | B - Add,..

Find more software by working with the "svallable Software Sites®
Mame wersion

@ There is no site selected

Select Al Deselect Al
Detalls
Show only the latest versions of available software Hide iterns that are already installed
Group items by category What is already installed?

Show only software applicable to target enviranment

Contact all update sites during install to find required software

e
@ Back lext Cancel Finish

In the “type or select a site” input box, type with below format:

<Name (any string)> - file:<path of the CDT plugin of Intel System Studio>

For example:

1552015.0.030 - file:/opt/intel/system_studio_2015.0.030/eclipse_support/cdt8.0/eclipse/

OR:

1§52015.0.030 - file:/C:/Program Files (x86)/Intel/System Studio 2015.0.027/eclipse_support/cdt8.0/eclipse/

After typing, press enter and you will see the contents of this plugin, check the checkbox of “Intel®
Software Development Tools”, and uncheck “contact all update sites during install to find required
software” (without this, it requires internet connection, or it may hang with the message “Calculating

requirements and dependencies.”), and see below:

= Install

Available Software
Check the items that you wish to install.

15.0.030 - file:/opt/intel/system_studio_2015.0.030/eclipse_support/cdt8.0/eclipse

Work with:
Find more software by working with the "Avail:

type filter text
Version

v v Il ntel® Software Development Tools
9.0.0.201409170735

gt IntelPp System Studio 2015

Select All Deselect All 1 item selected

Details
Intel® Software Development Tools 1.0.0.7H--cKEmzh7735A3K5G3GSC

Show only the latest versions of available software Hide itemns that are already installed
Group items b)-' category What is already installed?
"1 Show only software applicable to target environment

ct all update sites during install to find required software

@ T ()
e ——

Now, you can click the “Next” button and follow the prompt to accept the license agreement and
click “Finish” button to start the installation. After the installation finished, you will see pop-up window

as below:
Software Updates +0X

You will need to restart Eclipse for the changes to take effect. Would you

0 like to restart now?

No || Yes J

Click “Yes” to restart Eclipse and the integration is done.

Create a project with Intel® compiler in Eclipse*

You can easily create a project and use Intel® tool chain to build. You only need to select
corresponding Intel® Toolchain while creating the project. First, create a project with menu item “File-
>New->Project”, in the "New Project" window, select "C/C++ -> C Project" and click "Next", then, you

can select “Intel System Studio” as the Toolchains for your project (hello-world as “Project Name” and
“Hello World ANSIC C Project” as the “Project type”), click “Finish” and the project is created.

= C Project + 0 X
C Project —>
Create C project of selected type [
Project name: | hello-world

Use default location

Location: | /home/sgeng2/workspace/hello-world Browse...

Choose file system: | default «

Project type: Toolchains:

» = GNU Autotools Cross GCC

w (= Executable Intel System Studio

@ Empty Project Linux GCC

~ Hello World ANSI C Project

» = Shared Library
» (= Static Library
» = Makefile project

Show project types and toolchains only if they are supported on the platform

® < Back Next > Cancel | Finish

C/C++ - hello-world/src/hello-world.c - Eclipse

e Re search Intel System Studio Project Run Window Help
D Lo ® R BN G- & @@ H 0O Qv Q
@ & v 5 vy b o v o v |")I1ir|<;1_'r9-:v
[y Project Explorer 2 [l Bl [g hello-world.c 52 E O
5% - 3% Name : hello-world.c[]
: 10
%2 hello-world 11 #include <stdio.h>
> il Includes 12 #include <stdlib.h>
. 13
@ src 14~ int main(void) {
15 puts("!!!'Hello World!!!"); /* prints !!!Hello World!!! */
16 return EXIT_SUCCESS;
17 }
18

Setting up the cross-build options for your embedded Linux*
Targets

By default, the created project will build your application for your host machine, we need to set up

the cross-build options for the embedded Linux* targets (Yocto Project®, Wind River* Linux*, CE Linux*).

You are suggested to read below article first to understand how to use Intel Compiler for cross

compilation:

https://software.intel.com/en-us/articles/using-intel-c-compiler-for-embedded-system

Using gcc compatible sysroot option
This is introduced in Intel C++ Compiler 14.0 from Intel System Studio 2014, and suggested to be used
for newer embedded Linux™ versions, such as Yocto Project™ 1.3 or above, Wind River® Linux* 4 or

above and CE Linux* PR32 or above.

Basically, you need to set --sysroot and --gnu-prefix options for Intel Compiler. Click “Project ->
Properties” menu item and setting it in pop-up window as below (take Yocto Project* 1.5.1 as an
example):

- Properties for hello + 0 X
| type Hilter text e Settings w v v

» Resource : E .) N . r
®Tool Settings| | #Build Steps Build Artifact [Binary Parsers @ Error Parsers Intel® C++ Compiler

Builders
Bulld wariables w8 Intel C Compiler
Environment B General Sysroot fopt/pokyf1.5.1/sysroots/core2 -poky-linux Browse...
Logging (& Optimization GMNU Prefix | i586-poky-linux-
& Performance Library Build Corl
Tool Chain Editor & Advanced Debugging
» C/C++ General & Precompiled Headers
Linux Tools Path & Preprocessor
Project References (& Language
Run/Debug Settings (& Compilation Diagnostics
» Task Repository & Data
WikiText (& Floating Point

B Nutout Fles

It is similar for other embedded Linux, for example, for Wind River* Linux 5.x, the GNU Prefix value

may be “i686-wrs-linux-gnu-.

By default, the created project will use 64bit target compiler, if you are using 32bit target as above
example, you need to switch the compiler in “Intel(R) C++ Compiler” tab in above screenshots, see

below:

ies for hello

'|-_\;-r- filter text ' Settings " v -
» Resource

Builders
v C/C++ Buid Selected compiler:

SulldVeriabies [Intel(R) System Studio 15.0.030 [x85) '
Ervironment

Logging

®Tool Settings #Build Steps Build Artifact [Binary Parsers @ Emor Parsers | Intel® C++ Compiller

Available Intel(R) C++ Compilers
Intel(R) System Studio 15.0.011 [x86_84]
Intel{R) System Studio 15.0.011 [x86]
Intel{R} System Studio 14.0.035 [x86_64] el alEsh
IntellR) System Studio 14.0.035 [x86]
Intel(R) System Studio 15.0.014 [x86]
IntellR) System Studio 15.0.014 [x86_64]
Intel(R) System Studic 14.0.025 [x86]
Intel(R) System Studio 14.0.025 [x86_54]
IntellR) System Studio 14.0.033 [x8&]
Intel(R) System Studio 14.0.033 [x86_64]
Intel(R) System Studio 15.0.018 [x86]
IntellR) System Studio 15.0.018 [x86_64]

Use Selected
Tool Chain Editor —

P C/CH++ Generd
Linux Tools Path
Project References
Run/Debug Setting:

» Task Repository
WikiText

> Intel(R) System Studio 15.0.030 [x86]
Intel(R) System Studio 15.0.030 [x86_64]

You can select the compiler marked as “x86” and click “Use Selected” button for 32bit targets.

Using platform configuration

This is introduced from Intel C++ Compiler 13.0 from Intel System Studio 2013, and still available in
Intel C++ Compiler 15.0 from Intel System Studio 2015, to support the old embedded Linux* versions,
such as Yocto Project* 1.2 or 1.3, CE Linux* PR28, Wind River* Linux* 5.

Note: it is suggested to use the sysroot and GNU prefix options if the target Linux* is supported by
them, such as Yocto Project* 1.3, Wind River* Linux* 5.

First of all, you need to set the environment variables based on your target Linux*.

For Yocto Project™ based target, an example as below:

YL_SYSROOT=/opt/poky/1.3/sysroots/i586-poky-linux
YL_TOOLCHAIN=/opt/poky/1.3/sysroots/i686-pokysdk-linux/usr/bin/

To add these environment variables in Eclipse*, click “Project -> Properties” menu item and click

“Add...” button in pop-up window as below:

=) Properties for hello-world +0X

[type fitertext @ | Environment v 2oy -

» Resource
Builders Configuration: | Debug [Active]
v C/C++ Build

Environment

Environment variables to set

Variable Value Origin
Settings 1 1
)) CWD i /home/sgeng2fwo; BUILD SYSTEM
Tool Chain Editor . i
INTEL_LICENSE_FIL; foptflntellsystem_‘f; BUILD SYSTEM Edit...

» C/C++ General
Linux Tools Path
Project Reference

LD_LIBRARY_PATH{ /opt/intel/system_§ BUILD SYSTEM

New variable

Run/Debug Settin Name: \
» Task Repository)
WikiText Value: fopt/poky/1.3/sysroots/iS86-poky-linu _ Variables
"1 Add to all configurations
Cancel
© Append variables to native environment
() Replace native environment with specified one
Restore Defaults | Apply

After adding the 2 environment variables, you will see below:

Environment variables to set
Variable Value

CWD /home/sgeng2/workspace/hello-world/Debug
INTEL_LICENSE_FILE{ /Jopt/intel/system_studio_2015.0.030/licenses:/home/s
LD _LIBRARY_PATH fopt/intel/system_studio_2015.0.030/compiler/lib/intelé

NLSPATH fopt/intel/system_studio_2015.0.030/compiler/lib/intel&
PATH fopt/intel/system_studio_2015.0.030/bin/intel64:/opt/p
PWD /home/sgeng2/workspace/hello-world/Debug
YL_SYSROOT Jopt/poky/1.3/sysroots/i5S86-poky-linux/

YL _TOOLCHAIN Jopt/poky/1.3/sysroots/i686-pokysdk-linux/usr/bin/

Next, you need to set the -platform option based on your target Linux*, for example, for Yocto

Project* 1.3, you will need to set it as “yl13”, see below:

Properties for hello-world

"type filter text @ | settings ' -
’ Zi:g:ge 4 ®Tool Settings = #Build Steps WBuild Artifact [q}Binary Parsers @ Error Parsers P
v C/C++ Build & Intel System Studio Settings Browse...
Build variables v & Intel C Compiler ’ \
Environment @ General Pysroot | | Browse...
Logaging ® Optimization GNU Prefix |
@8 Performance Library Build Components
Tool Chain Editor @8 Advanced Debugging
» C/C++ General 8 Precompiled Headers
Linux Tools Path @& Preprocessor
Project References @& Language
Run/Debug Settings @ Compilation Diagnostics
» Task Repository @8 Data
WikiText @ Floating Point
@8 output Files
(& Code Generation
@ Runtime
8 Command Line
w % Intel C Linker
@ Libraries
(& Optimization
& Miscellaneous
@ Shared Library Settings
® Cancel oK

The supported values for -platform are as below:
32bit Targets: celpr28, yl12, yl13, wrl43, wrl50
64bit Targets: wrl43, wrl50

Again, the default created project will use 64bit as target, for 32bit targets, you need to switch it as

below:

Properties for hello

(type filter text | Settings " v -

» Resource
Builders

v C/C++ Buid Selected compiler:

Bulld Variables [Intel(R) System Studio 15.0.030 [x85)
Ervironment

Logging

) S . S
Intel(R) System Studio 15.0.011 [x86_84] Use Selected

Tool Chain Editor Intel{R) System Studio 15.0.011 [x86]

» C/C++ General IntellR) System Studio 14.0.035 [x86_64] Use Latest |
Linux Tools Path IntellR) System Studio 14.0.035 [x86]
Project References Intel(R) System Studio 15.0.014 [x86]
RUN/Debug Settings Intel{lR) System Studio 15.0.014 [x86_54]

b Task Repository Intel(R) System Studio 14.0.025 [x86]
WikiText Intel(R) System Studio 14.0.025 [x86_54]

Intel{R) System Studio 14.0.033 [x86]
Intel{R} System Studio 14.0.033 [x86_64]
Intel(R) System Studio 15.0.018 [x86]
IntellR) System Studio 15.0.018 [x86_64]

®Tool Settings #Build Steps Build Artifact [Binary Parsers @ Emor Parsers | Intel® C++ Compiller

Available Intel(R) C++ Compilers:

2 Intel(lR) System Studioc 15.0.030 [x86]
IntellR) System Studio 15.0.030 [x86_64]

You can select the compiler marked as “x86” and click “Use Selected” button for 32bit targets.

Using Intel® compiler options in Eclipse*

ICC is a compiler helping to improve performance and it provides lots of optimization options. You
may need to set the compilation options in Eclipse. You can do this from "Project->Properties" menu

items. See below example about setting the optimization level (01/2/3):

[type fiitertext @ | Settings G v v w

» Resource

& Intel System Studio Settings) Show Startup Banner (V)
Id
Builders .
v C/C++ Build v ¥ Intel C Compiler Include Debug Information (-g)

Build Variables d Optimization Optimization Level | Disable (-00)
| Compiler Default

Enwrlonment (& performance Library Build Components \Warni
L09aing @ Advanced Debugging Disable (-00)

Tool Chain Editor

(& Preprocessor Maximize Speed (-02)
F GCHE Generdl @ Language Maximize Speed Plus High Level Optimizati
Linux Tools Path s))
) f (& Compilation Diagnostics
Project References & Data

Run/Debug Settings
» Task Repository
WikiText

(& Floating Point
@& Output Fles
& Code Generation
(& Runtime
& Command Line
v & Intel C Linker
& Libraries
¢ Optimization
Miscellaneous
¢ Shared Library Settings

The “Intel C Compiler” contains the settings for compiler options, and the “Intel C Linker” contains
the settings for linker options. All these settings of Intel Compiler and Linker options are grouped. You
can easily find the options you want. If you cannot find specific option from these groups, you can also
add it using the "Command Line" group, which contains an edit box to enter the additional options you

need, see below:

Properties for hello

't_v'pe filter text ™] Settings

» Resource
Builders
v C/C++ Build

& Intel System Studio Settings
w i Intel C Compiler

e & General
BUII. Variables & Optimization
Environment & Performance Library Build Components
Logging

& Advanced Debugging
& Precompiled Headers

Tool Chain Editor

(& Preprocessor
» C/C++ General @ Language
L|rule Tools Path & Compilation Diagnostics
Project References EData
Run/Debug Settings & Floating Point
» Task Repository & Output Flles
WikiText

& Code Generation
& Runtime
w i Intel C Linker
& Libraries
& Optimization
Miscellaneous
(& Shared Library Settings

Build the project

Now, you can build the project and the build log as below:

"
ol

B Console 2 Propertie

«f Lall Lrapr

&)

o
CDT Build Console [hello]
15:26:35 ***+* Rebuild of configuration Debug for project hello *##*

Info: Internal Builder is used for build

icc -g -00 --sysroot=/opt/poky/1.5.1/sysroots/core2-poky-linux -gnu-prefix=i586-poky-linux- -c -o src/hello.
icc --sysroot=/opt/poky/1.5.1/sysroots/core2-poky-linux -gnu-prefix=i586-poky-linux- -o hello src/hello.o

15:26:35 Build Finished (took 415ms)

&

Additional Options | -02 -ipol

Offload Options for Processor Graphics (-¢

For more complete information about compiler optimizations, see our Optimization Notice.

