Using Intel® C++ Compiler in Eclipse*
for Embedded Linux* targets
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Introduction

In embedded area, Eclipse*® is popular and widely used. GCC* is well supported in Eclipse* now, while
using Intel® C/C++ compiler (ICC), you can also easily use it with Eclipse*. This article will guide you to
integrate Intel® C/C++ compiler (component of Intel® System Studio 2015) with Eclipse* and starts to
build a hello-world project.

This articles applies for users who developer on a Windows* or Linux® host, and use an embedded
Linux targets, including Yocto Project™, Wind River® Linux*, CE Linux* (Note: Only Wind River* Linux*
provides official SDK (Toolchains) for Windows* host.)

How to integrate Intel® C++ compiler with Eclipse*

The integration is based on CDT (Eclipse* C/C++ Development Tools) plugins, and CDT is needed
before installing the ICC integration plugins. The prerequisites for successful Eclipse* integration is:

(1) Eclipse* 3.7 (Indigo) or above
(2) Eclipse* CDT 8.0

(3) Java Runtime Environment (JRE) version 6.0 (also called 1.6) update 11 or later.



Automatic Integration during Intel System Studio installation
Pay attention to below screenshot when installing, check the “Integrate into Eclipse*”.
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Manual Integration in Eclipse*
This is same with installing any other Eclipse® plugins, click the menu item "Help->Install New
Software..." and install from local directory which contains the plugins. See below the pop-up window

after clicking “Help -> Install New Software...”:
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In the “type or select a site” input box, type with below format:

<Name (any string)> - file:<path of the CDT plugin of Intel System Studio>

For example:

1552015.0.030 - file:/opt/intel/system_studio_2015.0.030/eclipse_support/cdt8.0/eclipse/

OR:

1§52015.0.030 - file:/C:/Program Files (x86)/Intel/System Studio 2015.0.027/eclipse_support/cdt8.0/eclipse/

After typing, press enter and you will see the contents of this plugin, check the checkbox of “Intel®
Software Development Tools”, and uncheck “contact all update sites during install to find required
software” (without this, it requires internet connection, or it may hang with the message “Calculating

requirements and dependencies.”), and see below:
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Now, you can click the “Next” button and follow the prompt to accept the license agreement and
click “Finish” button to start the installation. After the installation finished, you will see pop-up window

as below:
Software Updates +0X

You will need to restart Eclipse for the changes to take effect. Would you

0 like to restart now?

No || Yes J

Click “Yes” to restart Eclipse and the integration is done.

Create a project with Intel® compiler in Eclipse*

You can easily create a project and use Intel® tool chain to build. You only need to select
corresponding Intel® Toolchain while creating the project. First, create a project with menu item “File-
>New->Project”, in the "New Project" window, select "C/C++ -> C Project" and click "Next", then, you



can select “Intel System Studio” as the Toolchains for your project (hello-world as “Project Name” and
“Hello World ANSIC C Project” as the “Project type”), click “Finish” and the project is created.
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C/C++ - hello-world/src/hello-world.c - Eclipse
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%2 hello-world 11 #include <stdio.h>
> il Includes 12 #include <stdlib.h>
. 13
@ src 14~ int main(void) {
15 puts("!!!'Hello World!!!"); /* prints !!!Hello World!!! */
16 return EXIT_SUCCESS;
17 }
18




Setting up the cross-build options for your embedded Linux*
Targets

By default, the created project will build your application for your host machine, we need to set up

the cross-build options for the embedded Linux* targets (Yocto Project®, Wind River* Linux*, CE Linux*).

You are suggested to read below article first to understand how to use Intel Compiler for cross

compilation:

https://software.intel.com/en-us/articles/using-intel-c-compiler-for-embedded-system

Using gcc compatible sysroot option
This is introduced in Intel C++ Compiler 14.0 from Intel System Studio 2014, and suggested to be used
for newer embedded Linux™ versions, such as Yocto Project™ 1.3 or above, Wind River® Linux* 4 or

above and CE Linux* PR32 or above.

Basically, you need to set --sysroot and --gnu-prefix options for Intel Compiler. Click “Project ->
Properties” menu item and setting it in pop-up window as below (take Yocto Project* 1.5.1 as an
example):
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It is similar for other embedded Linux, for example, for Wind River* Linux 5.x, the GNU Prefix value

may be “i686-wrs-linux-gnu-.

By default, the created project will use 64bit target compiler, if you are using 32bit target as above
example, you need to switch the compiler in “Intel(R) C++ Compiler” tab in above screenshots, see

below:
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You can select the compiler marked as “x86” and click “Use Selected” button for 32bit targets.

Using platform configuration

This is introduced from Intel C++ Compiler 13.0 from Intel System Studio 2013, and still available in
Intel C++ Compiler 15.0 from Intel System Studio 2015, to support the old embedded Linux* versions,
such as Yocto Project* 1.2 or 1.3, CE Linux* PR28, Wind River* Linux* 5.

Note: it is suggested to use the sysroot and GNU prefix options if the target Linux* is supported by
them, such as Yocto Project* 1.3, Wind River* Linux* 5.

First of all, you need to set the environment variables based on your target Linux*.

For Yocto Project™ based target, an example as below:

YL_SYSROOT=/opt/poky/1.3/sysroots/i586-poky-linux
YL_TOOLCHAIN=/opt/poky/1.3/sysroots/i686-pokysdk-linux/usr/bin/

To add these environment variables in Eclipse*, click “Project -> Properties” menu item and click

“Add...” button in pop-up window as below:
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After adding the 2 environment variables, you will see below:

Environment variables to set
Variable Value

CWD /home/sgeng2/workspace/hello-world/Debug
INTEL_LICENSE_FILE{ /Jopt/intel/system_studio_2015.0.030/licenses:/home/s
LD _LIBRARY_PATH fopt/intel/system_studio_2015.0.030/compiler/lib/intelé

NLSPATH fopt/intel/system_studio_2015.0.030/compiler/lib/intel&
PATH fopt/intel/system_studio_2015.0.030/bin/intel64:/opt/p
PWD /home/sgeng2/workspace/hello-world/Debug
YL_SYSROOT Jopt/poky/1.3/sysroots/i5S86-poky-linux/

YL _TOOLCHAIN Jopt/poky/1.3/sysroots/i686-pokysdk-linux/usr/bin/

Next, you need to set the -platform option based on your target Linux*, for example, for Yocto

Project* 1.3, you will need to set it as “yl13”, see below:
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The supported values for -platform are as below:
32bit Targets: celpr28, yl12, yl13, wrl43, wrl50
64bit Targets: wrl43, wrl50

Again, the default created project will use 64bit as target, for 32bit targets, you need to switch it as

below:
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You can select the compiler marked as “x86” and click “Use Selected” button for 32bit targets.

Using Intel® compiler options in Eclipse*

ICC is a compiler helping to improve performance and it provides lots of optimization options. You
may need to set the compilation options in Eclipse. You can do this from "Project->Properties" menu

items. See below example about setting the optimization level (01/2/3):
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The “Intel C Compiler” contains the settings for compiler options, and the “Intel C Linker” contains
the settings for linker options. All these settings of Intel Compiler and Linker options are grouped. You
can easily find the options you want. If you cannot find specific option from these groups, you can also
add it using the "Command Line" group, which contains an edit box to enter the additional options you

need, see below:
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Build the project

Now, you can build the project and the build log as below:

"
ol

B Console 2 Propertie

«f Lall Lrapr

&)

o
CDT Build Console [hello]
15:26:35 ***+* Rebuild of configuration Debug for project hello *##*

Info: Internal Builder is used for build

icc -g -00 --sysroot=/opt/poky/1.5.1/sysroots/core2-poky-linux -gnu-prefix=i586-poky-linux- -c -o src/hello.
icc --sysroot=/opt/poky/1.5.1/sysroots/core2-poky-linux -gnu-prefix=i586-poky-linux- -o hello src/hello.o

15:26:35 Build Finished (took 415ms)

&

Additional Options | -02 -ipol

Offload Options for Processor Graphics (-¢

For more complete information about compiler optimizations, see our Optimization Notice.




